
Profiling and Understanding CPU Power
Management in Linux

Ti Zhou∗, Haoyu Wang†, Xinyi Li‡ and Man Lin§
Department of Computer Science, St. Francis Xavier University, Canada

Email: ∗x2019cwm@stfx.ca, †x2020fcw@stfx.ca, ‡x2021gim@stfx.ca, §mlin@stfx.ca

Abstract—Dynamic Voltage and Frequency Scaling (DVFS)
is a popular technique for power management. Understanding
the DVFS principles and the current practice of existing DVFS
governors embedded in operating systems (OS) is essential.
This work aims to provide a deep understanding of DVFS
power management through real-time profiling on various Linux
platforms, including an Intel-based laptop, an ARM-based Jetson
Nano Board, and a Raspberry Pi platform. We first present the
theoretical model for dynamic and static power consumption and
describe experiments on three platforms to show how frequency
affects their power consumption. We then visualize the real-
time behaviour of the existing DVFS governors: the Ondemand
and Conservative governors in OS kernels on multiple platforms
under different parameter settings. Furthermore, we identify
issues that may be encountered in actual hardware experiments
but are often overlooked by researchers. Examples are coarse-
grained frequency levels and the OS interface not reflecting the
actual frequency. Finally, we design experiments to explore the
relationship between utilization and power. This work can help
DVFS algorithm designers to consider the practical aspect of
integrating DVFS algorithms into actual systems.

Index Terms—CPU power management, Dynamic Frequency
Scaling, Real-time Profiling, OS governors

I. INTRODUCTION

Power management is a crucial research topic in real-time
systems. Though there is some research exploring power man-
agement on real devices [1] [2] [3] [4] [5] [6] [7] [8], a vast
majority of the current research [9] [10] [11] [12] in power
management for systems evaluate their power management
algorithms based on empirical formulae and/or simulation.
The interaction between kernel modules, the architecture of
the different hardware platforms, and hardware compatibility
together affect the power controlled by a software power
management controller. The power on the actual devices is
thus likely different from that of the simulated environment. In
this work, we illustrate power management on actual devices
(three different platforms) by profiling the Linux kernel to
provide a deep understanding of existing governors and reveal
some of the on-device power management engineering issues.

We start by showing how frequency affects real devices’
static and dynamic power and performance. We first design
experiments to show the power consumption of three platforms
running with different frequencies with idle workload. We then
illustrate the relationship between performance, power and
frequency on the three platforms for a CPU-Intensive work-

load. We discuss the correlation between the commonly used
empirical formulae used in the literature and the measured
power of the actual devices through visualization.

We then visualize how the two commonly used dynamic
power management governors embedded in Linux, (Onde-
mand and Conservative), behave on real devices. We do this
by showing the real-time profile of the CPU load and the
governor’s selected CPU frequency. We then explain how the
governor works based on the algorithms summarized from
Linux governor manuals and justify the behaviour shown in
the profiled charts. In the Ondemand governor, there is a
parameter called powersave bias which can be set by users.
We showed how this parameter affects the performance of the
Ondemand governor on real testing platforms.

Then, we design experiments to identify the frequency set-
ting discrepancy (i.e. inconsistencies between system settings
and real results) on different platforms.

Finally, we design experiments to explore how utilization
affect power consumption.

Our previous research designed power management algo-
rithms and evaluated them on real devices [13] [14] [15].
This work aims to provide researchers with experimental
designs to show how DVFS and commonly used Linux power
management governors work. Experiments were designed to
show factors that might affect the DVFS performance on real
devices. We hope the practical engineering aspects discussed
in this paper and how we visualize the real-time behaviour
of DVFS governors will help researchers deploy and evaluate
their DVFS algorithms on real devices.

II. POWER CONSUMPTION MODEL

Power consumption model has been explored by different
researchers. Some work built a power model [16] [17] for the
entire system considering the power consumption of the CPU
and other components. Several works [18] [19] [20] [21] have
explored the relationship between the power model and some
parameters in proposing their own energy-saving methods.

Before designing a policy to adjust voltage/frequency to
save energy, a basic understanding of how the power con-
sumption model works on the actual hardware enables the
researchers to make a sound judgement on the reasonableness
of the results. This section is intended to help understand the



relationship between voltage/frequency and power consump-
tion by designing experiments to show some of the relations
through power measurement on three real platforms.

The CPU power consumption is modelled based on the
CMOS circuits model, described in detail in [22]. The total
power consumption P is made up of two types of power
consumption: the dynamic and static power consumption,
shown in Equation 1.

P = Pdynamic + Pstatic (1)

A. Dynamic Power Consumption

Dynamic power consumption comes from capacitor charg-
ing and discharging (switching power) and from circuit short-
circuiting caused by circuit flip-flopping (short-circuit power).
Thus, the expression for dynamic power consumption can be
defined as Equation 2 [22].

Pdynamic = Pswitch + Pshort (2)

As the short-circuit power consumption accounts for only
a small fraction of the dynamic power consumption [23], it
is assumed that the dynamic power consumption is approx-
imately equal to the switching power consumption, defined
in Equation 3, where α is called the activity factor, C is the
load capacitance, Vdd is the supply voltage and f is the clock
frequency [22].

Pdynamic ≈ Pswitch = αCV 2
ddf (3)

In addition, Vdd and f have the following relationship [22].

f ∝ β(Vdd − Vth)
2/CVdd (4)

The Vth refers to the threshold voltage, the voltage in the
input voltage that causes the input current to change sharply,
which is much less than the supply voltage. β is a constant
which is approximately equal to 1. Thus, we can assume
that f and Vdd have the following approximate proportional
relationship.

f ∝ Vdd (5)

Therefore, based on Equation 3 and Equation 5, we can
obtain the following relationship between dynamic power
consumption and voltage/frequency.

Pdynamic ∝ V 3
dd ∝ f3 (6)

As a result, the dynamic power consumption varies in a
cubic relationship with the voltage/frequency.

TABLE I
THE PARAMETERS OF THE THREE PLATFORMS

OS CPU Measurement Tools
Nvidia Jetson Nano Board 2GB Linux 4.9 ARM Cortex-A75 Power Meter

Raspberry Pi 4B Linux 5.15 ARM Cortex-A72 Power Meter
Laptop (Thinkpad T470) Linux 5.4 Intel I5-7200U Intel RAPL

B. Static Power Consumption

Static power consumption is much simpler than dynamic
power consumption. It can be defined as Equation 7, where
Vdd refers to the supply voltage and Istatic refers to the static
current [22].

Pstatic = Vdd × Istatic (7)

The static current is the current consumed by the device
itself when there is no workload, which means the device is
not operating (CPU in idle state) but has the supply voltage.
There are many sources of static currents, such as the sub-
threshold leakage current. Thus, when reducing the supply
voltage and static current, static power consumption is also
reduced [22].

C. Observations of Power Consumption on Real Platforms

In this subsection, we show our experiments designed to
observe how the dynamic and static CPU power consumption
models reflect in real platforms. Experiments were conducted
on the following three platforms: Jetson Nano Board 2GB
(JTN), Raspberry Pi 4B (RBP), and a laptop (ThinkPad T470).
We chose JTN and RBP because these two boards are popular

on embedded platforms. The Thinkpad choice is used as a
laptop comparison. The detailed information and configuration
are shown in Table I. On the laptop, the energy consumption
was measured by the RAPL interface [24]. While on the two
embedded devices, the energy consumption was measured by
a power meter, as these two embedded devices do not have
an API similar to RAPL interface to read energy consumption
directly.

The laptop supports a frequency range of 1.4 GHz to 2.5
GHz, which is verified in Section IV-B. The two boards
support the frequency range from 0.102 GHz to 1.479 GHz
and 0.6 GHz to 1.5 GHz, respectively.

1) Observations of Static Power Consumption: To observe
static power, we let the device enter an idle state (CPU not
performing any work) under each supported frequency. We
then measure the energy consumption of the idle state during
a given period.

For the laptop setting, intel pstate is disabled and ACPI
architecture is used. For the settings of cpuidle subsystem,
the disable value of all idle states for each CPU core is set
to 0, which allows the CPU enter those idle states. Similar
experiments are done in the JTN and the RBP.

For the board devices (JTN and RBP), we conducted two
sets of experiments for static power measurement. In the first



set of experiments, the board is connected with only the power
and network cables. In the second set of experiments, three
peripherals are plugged into the board: a monitor, a keyboard
and a mouse. The board’s power consumption was also
measured at each frequency. The results of the experiments
are shown in Figure 1.

Fig. 1. Idle power in three platforms

We observed from Figure 1 that the static power consump-
tion measured on the laptop is extremely low when it is in
an idle state. In contrast, the other two devices have higher
values of static power consumption with or without peripherals
attached. Our explanation for this is that the CPU of the
laptop supports more idle states than the other two devices,
and when there is no workload, it can enter deeper idle states,
which rarely consume energy. We conducted an experiment to
verify our explanation. We set disable value for deep cpuidle
states to 1 on the laptop so that its CPU cannot enter those
deep idle states. In this case, the static power consumption
measured became 2.1 W on average. The average static power
measured before the deep idle states were enabled (shown in
Figure 1) was only 0.1 W. This difference illustrates that the
idle governor on the laptop is very powerful in contributing
to energy saving. Thus, the readings from the RAPL interface
reflect the energy saving effect both by the DVFS governor
and the idle governor if cpuidle states are not disabled.

Figure 1 shows that the JTN board’s static power con-
sumption has two distinct levels in both settings (with and
without peripherals). The JTN has about the same static power
consumption under the first three supported frequencies, while
the rest supported frequencies share about the same static
power consumption. The latter one is much higher than the
former one. We inferred that the jump is due to voltage jump
while the consistency is due to the same voltage.

By comparing the two cases of the JTN board (with and
without peripherals) in Figure 1, the static power consumption
in the case with peripherals is higher than that in the case
without peripherals. The difference is due to the fact that
accessing more peripherals will increase the static current,
resulting in higher static power consumption. The experiment
confirms the formula in Equation 7 that the static power
consumption increases as the static current increases.

The static power consumption trend in RBP looks different
from that of JTN board. RBP’s static power consumption
increases slowly with frequency. It does not have the same
jump as the JTN because the gap between the two voltages
on the Raspberry Pi is too small. RBP has two voltage levels.
One is 0.835 V and another is 0.875 V. The voltage of 0.835
corresponds to the first frequency, while the frequency of
0.875 corresponds to all subsequent frequencies. The increase
in power consumption from the first to the second voltage
without the peripheral plugged in is 0.06 W. In comparison,
the average increase in power consumption by changing the
frequency while keeping the voltage constant is 0.02 W. The
same trend can be found in the case of attached peripherals.

2) Observations of Dynamic Power Consumption: The
following experiments were performed on three platforms to
observe the dynamic energy consumption. The settings of
intel pstate and cpuidle subsystem are the same as that
in static power consumption experiments. A CPU-intensive
workload (100% utilization for all cores) was run several times
at each frequency supported by the platform, and the average
running time and energy consumption were recorded. The
experiment results are shown in Figure 2. These results are
normalized with respect to the minimum value (the minimum
value as 1).

Fig. 2. Time consumption and energy consumption on three platforms



As can be seen from Figure 2, the running time decreases
with frequency increases. The total energy consumption, how-
ever, shows different trends on each platform. On the laptop
platform, energy consumption increases with frequency, while
on the other two platforms, energy consumption decreases
with frequency. This is because, on the laptop, there are
many voltage/frequency levels. When frequency increases, the
voltage also increases. This has led to an increase in both static
and dynamic energy consumption.

Fig. 3. Power consumption on three platforms

To better illustrate the dynamic and static power composi-
tion, we calculate the dynamic power consumption based on
the static energy and the total energy. The results are shown
in Figure 3, where the data for static power consumption is
taken from Figure 1 except the laptop. For the laptop, instead
of using the power shown in Figure 1 as the static power
estimation, we use the power consumption measured with the
cpuidle states disabled, as the laptop would not enter the idle
state when the benchmark keeps running. While for the other
two devices, we did not choose to use the data that cpuidle
states disabled because there are only two cpuidle states
on the board and they do not have much effect on energy.
The difference between the data with cpuidle states enabled
and disabled is only 0.06 W on average. Figure 3 confirms
that dynamic energy consumption increases sub-squared with

frequency. For both boards, the reason for the increase in
dynamic power consumption but the decrease in total energy
consumption as frequency increases is that, at low frequencies,
there is more static power consumption than dynamic power
consumption. The static power consumption remains the same,
but static energy consumption decreases due to the decrease in
time in completing the workload (note that the running time
decreases with frequency increases). This decrease is much
larger than the increase in dynamic energy consumption.

III. ANALYSIS OF Ondemand GOVERNOR AND
Conservative GOVERNOR

In this section, we describe the experiments that visualize
the policies of the Linux built-in DVFS governors: Ondemand,
and Conservative governors [25] with two benchmarks. One is
FaceAndAudioRecog that we designed. This benchmark first
runs a face recognition program which reads a photo and rec-
ognizes the location of each face in the image while recording
audio simultaneously. After completing the face recognition
program, the benchmark will sleep until 0.6 seconds. Then
it starts to extract features from the recorded audio. The
second benchmark is the Basicmath taken from Mibench
[26]. It uses SolveCubic(), usqrt(), and radtodeg() functions
to perform some basic math calculations. The benchmarks are
run periodically, with 1.0 and 5.0 seconds as the task period
for FaceAndAudioRecog and Basicmath, respectively.

Our profiler records the trace of the maximum load of all
the cores, average load of all the cores and frequency of
adjustment running these benchmarks using the governor. The
recording of this information is done via file writes in the
kernel. We conducted this set of experiments on the three
platforms in Table I.

A. Analysis of Ondemand Governor

The Ondemand governor is an immediate response governor
whose purpose is to translate CPU utilization into CPU
frequency in the most immediate way. It performs a frequency
adjustment after every period, determining the frequency of
the next cycle based on the CPU load of the current period.

The profiling results for Ondemand governor are shown
in Figure 4. In each subplot, the y-axis on the right side
represents the load, and the y-axis on the left side represents
each frequency level supported by the device. The vertical blue
dashed line represents the task period. The green bar is the
maximum CPU load in a time period, while the sloping bar is
the average load of the four cores. The orange line represents
the frequency chosen by the governor in a sampling point. It
is worth mentioning that here the bar represents the maximum
and average load between the two sampling points.

When running the FaceAndAudioRecog benchmark, the
ondmenad governor shows the same trend on all three plat-
forms. The highest frequency is selected when the maximum
load on the CPU is high at the beginning of the run, and
when the maximum load is reduced, the frequency selected is



Fig. 4. The performance of FaceAndAudioRecog (the top row) and Basicmath (the bottom row) under Ondemand governor on three platforms.

also reduced. The maximum load in the previous time interval
always determines the frequency in the next time interval.
When the first half of the benchmark finishes running, and the
CPU is in an idle state with little load, Ondemand will always
select the lowest frequency. The second half starts with an
increased frequency. Such a frequency selection is the same in
every cycle. The workload behaviour of Basicmath is simpler,
but it is still a good reflection of Ondemand’s policy.

The advantage of Ondemand governor is that the frequency
can be adjusted upward in time to meet the performance
requirements of the platform according to the utilization.
For example, when the system runs the FaceAndAudioRecog
benchmark, the Ondemand can quickly adjust to the maximum
frequency in the second half when the benchmark wakes up
from the sleep. At the same time, the frequency can be quickly
reduced during the CPU idle time period to achieve energy
savings. However, we can also observe that there is one unit
time interval of delay in Ondemand in responding to the load
change. As shown in Figure 4, there are many instances that
the current load is extremely small, yet a high frequency is
chosen because of the high load of the previous time period.
This delay can lead to energy waste.

B. Tune the powersave bias of Ondemand Governor

The parameter powersave bias is important in Ondemand.
Its main effect is to reduce energy consumption by reducing
system performance. Specifically, it reduces the upper limit
of frequency selection and compresses it in equal proportion.
The range of value of powersave bias is 0 – 1000. The value
of 100 means reducing the original frequency by 10%.

We illustrate the effect of powersave bias by running the
two benchmarks on the laptop, setting the powersave bias
to three different values: 0, 200 and 400. The results of the
experiment are shown in Figure 5.

The frequency selection is not restricted when the pow-
ersave bias is 0. When the powersave bias is set to 200
and 400, the frequencies represented by the yellow lines are
significantly lower and their upper boundary is set at 2.0
GHz and 1.7 GHz under the same benchmark. This mode of

behaviour allows the CPU to be in a specific frequency band
to save more energy. When the deadline is equal to the task
period, we can see that none of the two benchmarks are timed
out, and the frequency regulation trend is flatter than when the
powersave bias is set to 0, which saves some energy while
still meeting performance requirements.

C. Analysis of Conservative Governor

The main difference between the Conservative governor and
the Ondemand governor is the speed at which the frequency
changes. The Conservative governor has two thresholds, one
for up threshold and the other for down threshold. The Onde-
mand governor will immediately set the frequency to the max-
imum frequency when the load is greater than up threshold.
Conservative, on the other hand, differs from this in that it
adds a value which is freq step to the current frequency when
the load is greater than up threshold, thus has a slow change
in frequency. Similarly, it reduces the frequency by a value
when the load is less than down threshold. The Conservative
governor has no powersave bias value and is otherwise similar
to Ondemand governor.

We did the same experiment on the Conservative as Onde-
mand to visualize its policy. The results of the experiment are
shown in Figure 6. For the FaceAndAudioRecog benchmark, a
clear step-up and step-down can be seen on all three platforms.
It can be seen that in the middle part of each period, when
the first half of the benchmark ends running, instead of
immediately setting the frequency to the lowest frequency,
the Conservative drops the frequency by one step for each
time interval. Also, When the second half of the benchmark
starts, the frequency rises in small steps. This step-down is
more evident in Basicmath.

Comparing the experiments of Ondemand and Conservative
shows that the advantage of Conservative over Ondemand
is that it is more power efficient for benchmarks that do
not require much performance. For benchmarks that do not
require much performance, the Conservative governor saves
more energy as it slowly increases the frequency. On the
laptop platform, the FaceAndAudioRecog finished the first half



Fig. 5. The performance of two benchmarks on Laptop under Ondemand governor with tuning powersave bias.
.

Fig. 6. The performance of FaceAndAudioRecog (the top row) and Basicmath (the bottom row) under Conservative governor on three platforms.

running without even rising to the maximum frequency. In this
case, the Ondemand immediately adjusts the frequency to keep
it at its maximum. In fact, this benchmark does not require
such high performance with the set deadline. Thus, Ondemand
wastes energy compared to Conservative.

On the other hand, the slow drop-off frequency of Conser-
vative at the end of the benchmark wastes energy compared
to the immediate drop rate of the Ondemand.

The Conservative is therefore good for tasks that do not
require high performance, and its slowly increasing frequency
meets the need for energy efficiency. However, for some large
tasks, the slow increase in frequency can lead to slow start-ups
that do not meet performance requirements. Overall, Conser-
vative is slightly more energy efficient than Ondemand.

IV. CHALLENGES IN PRACTICAL HARDWARE

Integrating the DVFS algorithms into actual hardware and
evaluating their energy consumption in actual hardware can
often be difficult, which is quite different from the evaluation
based on empirical formulae and experiments carried out in
simulators. Through our experiments, we have summarised a
few challenges that would be encountered in actual hardware:

coarse-grained frequency levels and the OS interface not
reflecting the actual frequency.

A. Coarse-Grained Voltage/Frequency Levels

As shown in Figure 1 and discussed in Section II, the two
embedded devices have only two voltage levels. A constant
voltage leads to a constant static power consumption, which
means that adjusting only the frequency without adjusting the
voltage leads to unsatisfactory energy savings. Only having
two levels of voltage and frequency that DVFS policies can
choose leads to a limitation of the policy choices, which is a
challenge to developing a good DVFS policy.

B. Frequency Reflected by the OS Interface

When verifying the relationship between frequency and
energy consumption, it is important to make sure that the CPU
frequency set at the operating system level is reflected in the
hardware. We have found that this is not always true and can-
not be easily verified from the interfaces provided by Linux.
In this part, we will discuss this issue and present a simple
and easy-to-implement method for frequency verification.

The experiment is as follows. For each of the frequen-
cies shown on the scaling available frequencies interface,



Fig. 7. Validate the frequency supported on three platforms.

run a CPU-intensive benchmark multiple times. This CPU-
intensive benchmark consists of a long loop to do multiplica-
tion calculations. Under each frequency, we read and record
the frequency from the two interfaces, cpuinfo cur freq and
scaling cur freq, and get the average execution time of the
benchmark. The frequency to read from these two interfaces
is not high and does not put undue strain on the system.
The result of this experiment is shown in Figure 7. For our
experiments on all three platforms, the devices were connected
to the power only and runs only a single task.

As can be seen in Figure 7, the two interfaces do not show
the same frequency on the laptop platform. We verify which
of the displayed frequencies are really set in the hardware
using the following Equation 8, where f is the frequency, T
is the execution time and C is the constant. This equation
holds when the task is constant and no other external devices
consume power.

Fig. 8. The relationship of utilization and power of running a single-core
benchmark (left) and multi-core benchmark (right).

f × T ≈ C (8)

The red diagonal bars in the figure show the product of time
and frequency. On the laptop, the scaling cur freq interface
reflects the true frequency supported by the system, which is
in the range of 1.4 GHz to 2.5 GHz. On embedded platforms,
the two interfaces, cpuinfo cur freq and scaling cur freq
interface, have relatively consistent values at each frequency.
Based on the relationship between frequency and execution,
we found that 0.1 GHz to 1.48 GHz is supported by the system
on the JTN platform, and 0.6 GHz to 1.5 GHz is supported
by the system on the RPB platform.

V. UTILIZATION AND POWER

In this section, we will illustrate how utilization affects
power at a given frequency. We perform the following ex-
periments to illustrate the relationship.

We run a CPU-intensive benchmark and control the value of
frequency and utilization for each run. The power is calculated
by the measured energy consumption and time spent. The way
we control the utilization is to control CPU running time and
idle time. For example, we could let the benchmark run once
and then let the system sleep the same amount of time as the
run time of the benchmark to get a utilization close to 50%.

First, we run the single-core CPU-intensive benchmark,
which means the maximum utilization of the four cores is
25%. The frequency is set to 1.224 GHz. The results are
shown in Figure 8 (left). It can be seen that as utilization
increases, the power is also increased. Similar trend can be
observed for other frequencies. We then replace the single-
core benchmark with a multi-core benchmark which means
the maximum utilization can reach 100%. The multi-core
benchmark runs four threads of the single-core benchmark
at the same time. The results are shown in Figure 8 (right).
The power consumption of the multi-core benchmark and that
of the single-core benchmark show a similar trend.

VI. CONCLUSION

We have designed a set of experiments to illustrate DVFS
power management on real devices operating under Linux



OS. The devices include an Intel-based laptop, an ARM-
based Jetson Nano Board, and a Raspberry Pi platform. Our
first set of experiments illustrates DVFS power model and
provides an understanding of dynamic and static power related
to frequency and voltage. Our second set of experiments
visualizes the Linux governors, Ondemand and Conservative,
through profiling OS kernels. The profile shows the real-
time sequence of CPU max load, average load and fre-
quency selected by the governors. The visualization helps
the DVFS designer to better understand how the high-level
DVFS software controllers are reflected at the hardware level.
Furthermore, we have experimentally identified two aspects
of DVFS in real hardware that need attention: the hardware’s
coarse voltage/frequency levels and the OS interface possibly
not reflecting the actual frequency. These are issues that
are most likely to be overlooked in experiments but are
nevertheless important. Finally, we explored the relationship
between utilization and power presented on a real board.

In this work, the link between frequency, utilization and
static and dynamic power consumption is explored through
experiments on real devices, helping researchers to better
understand the parameters that affect power consumption
and DVFS affects OS performance and power. At the same
time, the experiments are designed to be easily replicated by
researchers to study the performance of power consumption
on other devices. Overall, The practical experience and ex-
perimental design shown in this work will bridge the gap
in software DVFS design and its deployment into hardware
devices.

REFERENCES

[1] J.-G. Park, N. Dutt, and S.-S. Lim, “An interpretable machine learning
model enhanced integrated cpu-gpu dvfs governor,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 20, no. 6, pp. 1–28,
2021.

[2] J. L. C. Hoffmann and A. A. Fröhlich, “Online machine learning for
energy-aware multicore real-time embedded systems,” IEEE Transac-
tions on Computers, vol. 71, no. 2, pp. 493–505, 2021.

[3] S. Bateni and C. Liu, “Apnet: Approximation-aware real-time neural
network,” in 2018 IEEE Real-Time Systems Symposium (RTSS), 2018,
pp. 67–79.

[4] R. Medina and L. Cucu-Grosjean, “Work-in-progress: Probabilistic
system-wide dvfs for real-time embedded systems,” in 2019 IEEE Real-
Time Systems Symposium (RTSS). IEEE, 2019, pp. 508–511.

[5] Z. Dong and C. Liu, “Work-in-progress: New analysis techniques for
supporting hard real-time sporadic dag task systems on multiprocessors,”
in 2018 IEEE Real-Time Systems Symposium (RTSS), 2018, pp. 151–
154.

[6] G. Massari, F. Terraneo, M. Zanella, and D. Zoni, “Towards fine-grained
dvfs in embedded multi-core cpus,” in Architecture of Computing
Systems – ARCS 2018, M. Berekovic, R. Buchty, H. Hamann, D. Koch,
and T. Pionteck, Eds. Cham: Springer International Publishing, 2018,
pp. 239–251.

[7] B. Acun, K. Chandrasekar, and L. V. Kale, “Fine-grained energy
efficiency using per-core dvfs with an adaptive runtime system,” in
2019 Tenth International Green and Sustainable Computing Conference
(IGSC), 2019, pp. 1–8.

[8] C. Scordino, L. Abeni, and J. Lelli, “Real-time and energy
efficiency in linux: Theory and practice,” SIGAPP Appl. Comput.
Rev., vol. 18, no. 4, p. 18–30, jan 2019. [Online]. Available:
https://doi.org/10.1145/3307624.3307627

[9] F. Reghenzani, A. Bhuiyan, W. Fornaciari, and Z. Guo, “A multi-level
dpm approach for real-time dag tasks in heterogeneous processors,” in
2021 IEEE Real-Time Systems Symposium (RTSS), 2021, pp. 14–26.

[10] A. Alsheikhy, S. Han, and R. Ammar, “Delay and power consumption
estimation in embedded systems using hierarchical performance model-
ing,” in 2015 IEEE International Symposium on Signal Processing and
Information Technology (ISSPIT), 2015, pp. 34–39.

[11] L. Han, L.-C. Canon, J. Liu, Y. Robert, and F. Vivien, “Improved
energy-aware strategies for periodic real-time tasks under reliability
constraints,” in 2019 IEEE Real-Time Systems Symposium (RTSS), 2019,
pp. 17–29.

[12] Y. Cho, D. Shin, J. Park, and C.-G. Lee, “Conditionally optimal
parallelization of real-time dag tasks for global edf,” in 2021 IEEE
Real-Time Systems Symposium (RTSS), 2021, pp. 188–200.

[13] D. Ramegowda and M. Lin, “Energy efficient mixed task handling on
real-time embedded systems using freertos,” Journal of Systems
Architecture, vol. 131, p. 102708, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1383762122002016

[14] S. K. Panda, M. Lin, and T. Zhou, “Energy efficient computation
offloading with dvfs using deep reinforcement learning for time-critical
iot applications in edge computing,” IEEE Internet of Things Journal,
pp. 1–1, 2022.

[15] T. Zhou and M. Lin, “Deadline-aware deep-recurrent-q-network gover-
nor for smart energy saving,” IEEE Transactions on Network Science
and Engineering, vol. 9, no. 6, pp. 3886–3895, 2022.

[16] A. Castagnetti, C. Belleudy, S. Bilavarn, and M. Auguin, “Power
consumption modeling for dvfs exploitation,” in 2010 13th Euromicro
Conference on Digital System Design: Architectures, Methods and Tools.
IEEE, 2010, pp. 579–586.

[17] K. R. Stokke, H. K. Stensland, P. Halvorsen, and C. Griwodz, “High-
precision power modelling of the tegra k1 variable smp processor
architecture,” in 2016 IEEE 10th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSOC). IEEE, 2016, pp.
193–200.

[18] J. L. March, S. Petit, J. Sahuquillo, H. Hassan, and J. Duato, “Dynamic
wcet estimation for real-time multicore embedded systems supporting
dvfs,” in 2014 IEEE Intl Conf on High Performance Computing and
Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and
Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst
(HPCC, CSS, ICESS). IEEE, 2014, pp. 27–33.

[19] P.-C. Hsiu, P.-H. Tseng, W.-M. Chen, C.-C. Pan, and T.-W. Kuo,
“User-centric scheduling and governing on mobile devices with big.
little processors,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 15, no. 1, pp. 1–22, 2016.

[20] C. Scordino, L. Abeni, and J. Lelli, “Energy-aware real-time scheduling
in the linux kernel,” in Proceedings of the 33rd Annual ACM Symposium
on Applied Computing, 2018, pp. 601–608.

[21] A. Balsini, T. Cucinotta, L. Abeni, J. Fernandes, P. Burk, P. Bellasi,
and M. Rasmussen, “Energy-efficient low-latency audio on android,”
Journal of Systems and Software, vol. 152, pp. 182–195, 2019.

[22] N. H. E. Weste and D. Harris, CMOS VLSI Design: A Circuits and
Systems Perspective, 3rd ed. Pearson Education, 2004.

[23] H. Veendrick, “Short-circuit dissipation of static cmos circuitry and its
impact on the design of buffer circuits,” IEEE Journal of Solid-State
Circuits, vol. 19, no. 4, pp. 468–473, 1984.

[24] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl:
Memory power estimation and capping,” in 2010 ACM/IEEE Interna-
tional Symposium on Low-Power Electronics and Design (ISLPED).
IEEE, 2010, pp. 189–194.

[25] R. Wysocki, “Cpu performance scaling,”
https://www.kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html,
2018.

[26] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the fourth annual IEEE
international workshop on workload characterization. WWC-4 (Cat. No.
01EX538). IEEE, 2001, pp. 3–14.


