
Journal of Systems Architecture 142 (2023) 102955

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

CPU frequency scheduling of real-time applications on embedded devices
with temporal encoding-based deep reinforcement learning
Ti Zhou, Man Lin ∗

Department of Computer Science, St. Francis Xavier University, Nova Scotia, Canada

A R T I C L E I N F O

Keywords:
Energy management for small devices
Reinforcement learning with temporal
encoding
Soft-deadline constrained application

A B S T R A C T

Small devices are frequently used in IoT and smart-city applications to perform periodic dedicated tasks with
soft deadlines. This work focuses on developing methods to derive efficient power-management methods for
periodic tasks on small devices. We first study the limitations of the existing Linux built-in methods used
in small devices. We illustrate three typical workload/system patterns that are challenging to manage with
Linux’s built-in solutions. We develop a reinforcement-learning-based technique with temporal encoding to
derive an effective DVFS governor even with the presence of the three system patterns. The derived governor
uses only one performance counter, the same as the built-in Linux mechanism, and does not require an explicit
task model for the workload. We implemented a prototype system on the Nvidia Jetson Nano Board and
experimented with it with six applications, including two self-designed and four benchmark applications.
Under different deadline constraints, our approach can quickly derive a DVFS governor that can adapt to
performance requirements and outperform the built-in Linux approach in energy saving. On Mibench workloads,
with performance slack ranging from 0.04 s to 0.4 s, the proposed method can save 3%–11% more energy
compared to Ondemand. AudioReg and FaceReg applications tested have 5%–14% energy-saving improvement.
We have open-sourced the implementation of our in-kernel quantized neural network engine. The codebase
can be found at: https://github.com/coladog/tinyagent.
1. Introduction

1.1. The context of energy saving problem

Soft-deadline periodic real-time systems are commonly seen in
many IoT/CPS/smart city/wearable computing systems to provide
ubiquitous and rich services. The following are some sample systems
reported in IEEE IoT Magazine.

• Smart dairy farm: deploying sensors on cows to collect the bio-
logical information for the purpose of classifying their status [1].

• Pest detection in precision agriculture: using cameras to pho-
tograph the crop to detect the location of pest [2].

• Covid-19 screening and detection: putting sensors on drones to
collect biological information and detect Covid-19 infection [3].

• Smart irrigation: collecting weather, crop growth, and soil condi-
tions to analyze and predict whether the soil needs irrigation [4].

• Distance violation detection: mounting cameras on vehicles to
detect distance violation [5].

∗ Corresponding author.
E-mail address: mlin@stfx.ca (M. Lin).

These systems normally consist of multiple small devices filled
with sensors/network calls and pre-defined periodically running work-
loads to be completed before the next task period. Besides the perfor-
mance requirement, low power consumption is another important QoS
requirement for such small devices for the battery life.

Our goal in this work is to derive an adaptive model-free method
that can save energy for such types of applications (Soft-deadline
periodic CPS applications) running on small devices that have limited
computing capacity.

1.2. Model-based or model-free energy saving method?

Modern small-device computing mainly relies on low-power CPUs.
Dynamic Voltage and Frequency Scaling (DVFS) technology, which
tunes the CPU’s voltage (V) and frequency (f) on-demand, is a popular
way to address such needs. It is a classical problem in the real-time
system community to schedule the CPU performance as energy-efficient
as possible while satisfying the computational performance need. Many
research works have been performed in this area.
vailable online 28 July 2023
383-7621/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysarc.2023.102955
Received 30 December 2022; Received in revised form 20 June 2023; Accepted 25
 July 2023

https://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
https://github.com/coladog/tinyagent
mailto:mlin@stfx.ca
https://doi.org/10.1016/j.sysarc.2023.102955
https://doi.org/10.1016/j.sysarc.2023.102955

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
Fig. 1. Model-based and model-free power management policy.

Power management algorithms can be classified into two categories:
model-based and model-free. Their differences are shown in Fig. 1.
Model-based algorithms need a specification of the system with prior
knowledge of the tasks [6–17], including the attributes of the tasks
such as worst-case execution time (WCET) [7,9,17], deadline [7,9–16],
task period [8–10,13,15], possible priorities [8,10], or the relations of
the tasks specified as a DAG task graph with the communication cost
and precedence order of the tasks [6,7,9–12,14–16]. The mathematical
model of the tasks, together with the machine architecture features,
are used to find an optimal strategy for power management. On the
other hand, a model-free DVFS algorithm does not require the input
of task-specific information. They either make decisions on frequency
scaling based on some predefined assumptions (e.g. CPUFreq governors
in Linux assume the future utilization is the same as the current CPU
load measured by the performance counter), or collect feedback from
the system during operation to adapt to the characteristics of the
environment [18–29].

The Model-based approach is limited to systems with a known
explicit model. The detailed timing behavior of the tasks running on
a specific target machine needs precise knowledge of the tasks and
the architecture of the target machine, which could affect the timing
behavior of the tasks. The system model (tasks + device) is normally
hard to obtain. Therefore, such methods are only adopted for hard
real-time systems that are safety-critical when a careful analysis of the
system and tasks is necessary.

1.3. Problem statement and proposed approach

Model-free DVFS methods are the common practice in general-
purpose operating systems, such as Linux. Their power management
policy can be applied to any task. We adopt a model-free power
management method, given that many CPS applications are deployed to
systems without prior knowledge of an explicit task model and device
model.

We first look at the common structure (architecture) of a model-free
DVFS algorithm, which includes the following.

1. Use performance counters to construct the current system fea-
tures.

2. Use a model for inference.
3. Select the next period’s CPU frequency based on the model’s

output.

The Linux built-in methods (Ondemand, Conservative and Schedutil) are
a classic application of the above architecture. They sample the CPU
utilization of the past period as a system feature, predict the constant
computational demand for the next period, and then update the CPU
frequency based on some heuristic rules.

Recent research efforts have focused on how to improve this archi-
tecture. Methods include: enabling more performance counters to build
2

complex system features [19,20,27], using powerful models for pre-
diction [18–21,24], designing better control rules [18–21], or learning
control policy based on reinforcement learning [24–27,30].

For general systems, where the arrival time of tasks is highly vari-
able and diverse, improving power management strategies can be
difficult. However, periodic systems are special from a temporal point
of view, as they run a set of pre-defined tasks periodically. Can we
exploit this feature to develop a better CPU power management policy
for a system?

This work focuses on how to deriving efficient model-free meth-
ods for periodic tasks with a soft-deadline running on small de-
vices.

1.3.1. Study the limitation of existing model-free DVFS governors through
profiling

To avoid reinventing the wheel, our first step in approaching this
problem is to study the behavior of existing Linux built-in governors
through kernel-level profiling. We want to study if simply tuning the
existing built-in governor will result in a better energy-efficient gover-
nor that is tailored for the periodic tasks with a soft deadline. In tuning
the power management strategy for periodic soft real-time systems
commonly found in contemporary embedded systems, we observe that
the structure of existing DVFS governors can be ineffective for three
frequently occurring system patterns. To be more specific, CPU cores
only have coarse-grained voltage/frequency level (limited) support,
which is typical for small devices, cores can experience unbalanced load
distributions, and tasks can have internal slack.

This is mainly because existing built-in DVFS algorithms focus on
the short-term computational characteristics of the system, whereas a
good strategy for achieving an overall optimal solution often requires
macroscopic knowledge: what has been computed in the past and what
will be computed in the future.

This motivates us to find alternative methods to obtain a model-
free governor rather than attempting to tune the existing governor
for energy saving for the particular class of workload (soft-deadline
periodic tasks) that we are interested in. The problem can be thought
of as a sequence of decision-making of assigning a frequency to the
CPU at each decision point. Reinforcement learning is a natural strategy
to apply in the absence of an explicit model of the tasks to help with
decision-making.

1.3.2. Using reinforcement learning with temporal encoding to derive model-
free governors

A reinforcement learning approach will learn a DVFS inference
model (a governor) through the feedback of the sequence frequency
decisions, including its effect on the system load, timing, and energy
consumption. Note that every frequency assignment in the sequence
makes a difference in the amount of energy used at the end and how
long it takes to complete the task. So, a pool of time series data will
form the foundation of the learning process.

One of the most crucial design issues for reinforcement learning the
state representation. Automatic encoding of features from raw input
data has been the main focus of recent artificial intelligence. In a
previous work [30], RNN was used to encode time series automatically.
Until now, this approach has relied on complex computations and
lengthy learning from large amounts of data. Another drawback of
automatic encoding is its poor interpretability.

We choose an explicit encoding for the temporal information in this
work to achieve higher interpretability and to ease the burden of model
learning, which is important for small devices with limited computing
resources.

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
Fig. 2. How to understand the computing demand for the next period?

1.4. Contribution

We choose Nvidia Jetson Nano 2 GB board as our experiment
testbed.

Our first contribution is to study the limitation of existing Linux
built-in DVFS methods through profiling. To analyze the CPU frequency
control policy, we designed and implemented a low-overhead in-kernel
profiler to collect the complete ms-level runtime data of the Linux
CPUFreq governor. With this profiler, we identified three scenarios
when the Linux built-in DVFS methods are ineffective.

• Target devices only support coarse-grained voltage (or frequency)
levels, which are common for small devices. For example, both
Raspberry Pi 4B+ and Nvidia Jetson Nano Board 2 GB only
support two V/f levels.

• Multi-core architectures have unbalanced CPU load distribution.
• There exist internal slacks within the workload caused by IO calls

(sensors, cameras, microphones, network interactions, etc.).

Our second contribution is to design a reinforcement learning-based
frequency governor under the CPUFreq framework with a temporal
encoded system state to better address the above challenges.

We only use CPU load (utilization) for decision-making as standard
built-in Linux governors. However, the instance information of CPU
load (utilization) cannot provide sufficient distinction for the CPU to
make different frequency scaling choices that consider the computation
requirement of the current tasks. Therefore, the state construction of
our method is based on the temporal sequence of the load instead of
the load value at the previous instance, as shown in Fig. 2. The temporal
sequence is encoded as a vector reflecting the progress of task execution
for the RL governors to make a decision. The temporal encoding enables
a reinforcement learning method to efficiently understand the workload
from a macro perspective by mining the timing sequence even without
the explicit model of the workload. The domain-assisted encoding is
different from Standard RNN, where the encoding vector is learned,
making on-device learning infeasible if the application workload se-
quence is long. Experiment results show that the encoding, together
with the reinforcement learning method, is effective for finding good
DVFS scaling strategies through on-device reinforcement learning.

The following summarizes the advantage of our energy-saving
framework with on-device learning for periodic CPS applications with
soft deadlines.

• High Interpretability. We carefully designed the system state
used in reinforcement learning to include features that intuitively
contain valuable information.
3

• Low Deployment Complexity. Excessive training time due to
large amounts of trial and error can lead to increased deployment
complexity. We achieve low training time by properly designing
the state to contain explicit and useful information from a human
expert perspective to help the model quickly link the cause and
the result. In our experiments, the proposed method learns a good
DVFS policy with only three hundred workload runs.

• Low Resource Overhead. Similar to [30], our work only imple-
ments the decision inference component at the kernel level. The
learning component is implemented at the user level with data
collected by the in-kernel profiler. Thus, the kernel state is only
burdened with little inference overhead. Our work further reduces
the overhead by applying quantization [31], with which the
kernel can avoid floating-point calculation. In our experiments,
an inference of the proposed method takes only 25.62 us with
1.479 GHz on average.

2. Background

2.1. Dynamic power consumption

The dynamic power consumption 𝑃𝑑 of a CMOS circuit is deter-
mined by [32]:

𝑃𝑑 = 𝛼 × 𝐶 × 𝑉 2
𝑑𝑑 × 𝑓, (1)

where 𝑉𝑑𝑑 is the supply voltage, 𝑓 is the clock frequency, 𝛼 is the
switching activity level, and 𝐶 is the capacitance of the circuit.

Supply voltage 𝑉𝑑𝑑 and clock frequency 𝑓 are related as follows:

𝑓 ∝
𝛽(𝑉𝑑𝑑 − 𝑉𝑡ℎ)2

𝑉𝑑𝑑
, (2)

where 𝑉𝑡ℎ is the threshold voltage, and 𝛽 is a technology-dependent
constant. For 𝑉𝑑𝑑 ≫ 𝑉𝑡ℎ and 𝛽 closed to 1, clock frequency 𝑓 is roughly
proportional to 𝑉𝑑𝑑 . In this case, the dynamic power consumption is
proportional to 𝑉𝑑𝑑 and 𝑓 through a cubic relationship:

𝑃𝑑 ∝ 𝑉 3
𝑑𝑑 ∝ 𝑓 3 (3)

Dynamic power consumption reduces with the frequency following
a cubic relationship, whereas execution time increases following a
nearly linear relationship. This property determines that, for the same
task, it can be executed with less energy at a lower frequency/voltage.
Suppose only the frequency is reduced, but the voltage stays the same.
Due to the reduced current in this scenario, the instantaneous power
consumption is lower. However, since the running task will take longer
to complete, the total amount of energy used to complete one task will
not be lowered.

It is worth mentioning that even if the energy consumption cannot
be reduced, the heat generation of the system will be reduced due to
the decrease in the instantaneous power. However, if hardware costs
permit, it is desirable to regulate the voltage and frequency together.

2.2. Static power consumption

Static power consumption 𝑃𝑠 represents 20%–40% of the power
budget of microprocessors in modern fabrication technologies [32], it
is determined by:

𝑃𝑠 = 𝐼𝑠𝑡𝑎𝑡𝑖𝑐 × 𝑉𝑑𝑑 (4)

𝐼𝑠𝑡𝑎𝑡𝑖𝑐 is primarily due to subthreshold leakage current, and gate
leakage current [32], which are affected by the supply voltage 𝑉𝑑𝑑 .
Lowering 𝑉𝑑𝑑 can save both dynamic power consumption and static
power consumption. When the CPU is idle, lowering the CPU voltage
can effectively save energy. On Jetson Nano Board 2 GB, when the
system is idle, by setting the CPU to the lowest voltage, the board-wide
power consumption (measured by a power meter) can be reduced by
36%.

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
Fig. 3. Profiling of Ondemand governor using our profiler.

CPU Idle Time Management, which shuts down part of the CPU
hardware function when idle, is another efficient way to reduce static
energy consumption. However, the more CPU functions are turned off,
the more time and energy are required to switch back to a normal
state. Software-level algorithms need to be implemented to predict the
idle duration of the CPU to select the appropriate idle state to enter.
Poorly designed idle control algorithms can waste energy and lose
performance at the same time.

3. Low overhead kernel profiling

The process of CPU frequency scaling can be viewed as an agent
(frequency governor) observing the environment (the computing de-
vice managed by the OS that runs the work-load) and taking actions
accordingly (frequency scaling). In order to better comprehend the ad-
vantages and disadvantages of different policies, we want to depict the
decision-making process, which can also enhance the interpretability of
a learning-based solution.

Reading kernel data via default Linux support (for example, charac-
ter file systems like sysfs) or advanced tools (for example, perf [33])
often involves reading a string from a buffer/file and then extract-
ing data from it. The two built-in Linux CPU frequency governors
(Ondemand and Conservative) typically perform 100 inferences per sec-
ond by default [34]. Performing Perf-like [33] operations at such
a high rate will put a non-negligible burden on the real workload
of the system, which would cause the resulting profiling data to be
meaningless.

Our objective is to profile the complete in-kernel CPU tuning data
at the micro-second level while ensuring low latency. Our solution
involves inserting a profiler into the CPU governor that, at runtime,
sends data directly to the kernel’s data structures and writes data to
the shared file system only at the end of the system run.

Each time the CPU governor makes an inference, our profiler col-
lects necessary data into an array in DRAM. Specifically, our profiler
writes 42 bytes of data per inference. If the governor performs 100
inferences a second, then a 14.17 MB array is sufficient to store all the
information generated in one hour. At the end of the system run, the
profiler writes the collected data to the shared file system accessible to
the user-state. The final write-out overhead barely has any effect on the
runtime workload that is being profiled.

Fig. 3 shows a visualization of Ondemand governor’s runtime pro-
filed by the proposed method. The system in this example runs a face
recognition workload per second (the blue dash line in the figure is the
task period and the deadline). At each sampling point (orange nodes
in Fig. 3), the profiler records the maximum/average CPU load (uti-
lization) among cores in the last period, and the subsequent frequency
Ondemand governor decides to set. The timestamp of each action is
precisely recorded in an ms-view.

4. Linux built-in methods: Limitations

As of Version 5.13, Linux provides three dynamic DVFS policies
[34]: Ondemand, Conservative, and Schedutil. Ondemand and Conservative
4

Algorithm 1 Ondemand DVFS governor in Linux V5.13: a simplified
description
1: 𝐹 denotes the provided frequency options.
2: 𝑚𝑖𝑛𝑓∕𝑚𝑎𝑥𝑓 denotes the min/max supported frequency in 𝐹 .
3: 𝑛𝑒𝑥𝑡𝑓 denotes the frequency to be applied.
4: for each sampling period do
5: Calculate the last period’s CPU utilization 𝑢, 𝑢 ∈ [0, 1].
6: if 𝑢 > 𝑢𝑝_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (tunable, ∈ [0, 1], 0.8 by default) then
7: 𝑛𝑒𝑥𝑡𝑓 = 𝑚𝑎𝑥𝑓 .
8: else
9: 𝑛𝑒𝑥𝑡𝑓 = 𝑚𝑖𝑛𝑓 + (𝑚𝑎𝑥𝑓 − 𝑚𝑖𝑛𝑓) × 𝑢.

10: 𝑛𝑒𝑥𝑡𝑓 = (1 − 𝑝𝑜𝑤𝑒𝑟𝑠𝑎𝑣𝑒_𝑏𝑖𝑎𝑠 (tunable, ∈ [0, 1], 0 by default)) ×
𝑛𝑒𝑥𝑡𝑓 .

11: 𝑛𝑒𝑥𝑡𝑓 = the highest frequency below or at 𝑛𝑒𝑥𝑡𝑓 supported in 𝐹 .
12: Apply 𝑛𝑒𝑥𝑡𝑓 .

Fig. 4. Use only two V/f supports to fill the fine slack.

Fig. 5. Ondemand tuning when powersave_bias = 0, 0.3, 0.6.

are time triggered. They use a timer to regularly sample data from
the past period and control the frequency of the next period. Schedutil,
implemented as part of the scheduler, does not rely on a timer but is
actively woken up by the scheduler to tune the frequency. The core
strategies for Ondemand and Schedutil are similar. Algorithm 1 gives a
description of Ondemand in Linux V 5.13. This strategy is effective in
its ability to reduce frequency/voltage in low-utilization periods (see
300 ms–1000 ms in Fig. 3 for example), thus saving dynamic and static
energy consumption. The conservative governor slowly changes the
frequency at a fixed pace (different from line 9 in Algorithm 1), which
is less responsive to changes in utilization.

Linux built-in policies are designed for general-purpose systems,
and they are low overhead and do not need prior knowledge of the
workload. Thus they are the current practice of DVFS. Next, we study
the limitation of Linux built-in DVFS for soft-deadline workloads. We
achieve this by identifying a few system settings and workload patterns
that the built-in governors cannot effectively handle. This motivates the
development of a reinforcement learning governor for energy saving
that needs little prior knowledge of the tasks and machine.

4.1. Coarse-grained voltage/frequency support

As Linux V 5.13, Linux has one built-in parameter (powersave_bias in
Ondemand) for tuning DVFS (downscaling CPU performance to fill the

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
Fig. 6. A strategy with lower average utilization.

slack). The strategy is shown in line 10 of Algorithm 1. Fig. 5 displays
the tuning of powersave_bias on the workload shown in Fig. 3.

Such a strategy will be less effective for embedded CPUs that do not
support fine-grained voltage/frequency support. Although the ARM-
A57 CPU in Nvidia Jetson Nano Board 2 GB supports 15 frequency
levels, it only supports two voltage levels, and energy-saving requires
the CPU frequency to be reduced along with the voltage. We can
observe that the downscaling performed by the powersave_bias shown
in Fig. 5 cannot save energy. Only when many frequencies are dropped
to 0.307 GHz (a lower voltage value) the loss of performance begins
to have energy-saving benefits. This means a 5x CPU slowdown (drop
from 1.479 GHz to 0.307 GHz in high utilization periods), and in many
cases, the system would not have such a considerable slack to fill.
Conversely, if the system supports the fine-grained V/f option, the user
can drop the CPU performance slightly to fill a small slack (e.g., from
1.479 GHz to 1.326 GHz).

As one of the most well-known embedded boards, the ARM-A72
in Raspberry Pi 4B also supports only 2 CPU V/f levels. For Rasp-
berry Pi 4B, users can edit /boot/config.txt to enable the undervoltage
function [35]. In this case, for the lowest frequency (0.6 GHz), the
corresponding CPU voltage is reduced, but it also means a 2.5x CPU
slowdown (from 1.5 GHz to 0.6 GHz).

In IoT systems where a large number of small devices need to
be deployed, people tend to want cheaper devices and, therefore,
potentially face challenges of energy savings for systems with coarse-
grained V/f support. We want to point out that even Raspberry Pi 4
and the Nvidia Jetson Nano Board 2 GB, the two relatively high-end
embedded devices that nowadays cost more than a hundred dollars,
support only coarse-grained V/f. Thus, coarse-grained V/f support is a
common system setting that we need to consider when designing DVFS
governors for embedded systems.

For machines that only support the coarse-grained V/f option,
can the DVFS governor be tuned to fill the fine slack? For example,
for the workload shown in Fig. 3, for the default setting of Ondemand
on Nvidia Jetson Nano Board 2 GB, a task takes about 0.35 s to
complete. Fig. 4 shows such a possible solution for the 0.6-second
deadline setting. However, such a solution cannot be found by tuning
the built-in governors. If one wishes to tune an energy-saving policy
based on powersave_bias for the built-in governor, the deadline for a
task cannot be less than 1.5 s.

We observe that for the same high CPU utilization periods, the
solution shown in Fig. 4 sets part of the periods to high frequency
and part of the periods to low frequency. This is not possible for
the built-in Linux methods since they determine the demand for the
next period based on the utilization of the past period (the system’s
instantaneous computational demand). In order to develop the strategy
shown in Fig. 4, the governor needs to be able to develop the strategy
without being bound to instant characteristics and based on the overall
execution of a task.

4.2. Unbalanced load distribution

Since many embedded CPUs nowadays (such as the ARM-A57 in the
Nvidia Jetson Nano Board 2 GB and the ARM-A72 in the Raspberry Pi
5

Fig. 7. Power consumption for different CPU utilization on Jetson Nano Board 2 GB.

4B) do not support per-core DVFS, the entire CPU package must run at
one single frequency. The Linux built-in method chooses the subsequent
frequency based on the highest utilization among all the cores in the
previous time period.

For periods with different average utilization, the same frequency
downscaling may result in different energy gains with similar perfor-
mance loss. This is because a task will only be considered finished when
all the tasks on all CPU cores have been completed. For example, for
the workload shown in Fig. 3, downscaling the period of 0–100 ms
would have a similar performance loss as downscaling the period of
100–200 ms because the max CPU utilization among cores in these two
periods is both 100%. In this case, executing the instructions in one
period with 1.479 GHz can be converted to around five periods with
0.307 GHz. However, downscaling the period of 100–200 ms could
have more energy gains because of the higher average utilization (more
cores at work), which means more dynamic energy consumption caused
by 0/1 flipping can be saved. As shown in Fig. 7, downscaling V/f on
higher-average-utilization periods can save more power, which means
more energy-saving when the running time is consistent.

Fig. 4 (denoted by 𝑃𝑜𝑙𝑖𝑐𝑦ℎ𝑖𝑔ℎ_𝑢𝑡𝑖𝑙) and Fig. 6 (denoted by
𝑃𝑜𝑙𝑖𝑐𝑦𝑙𝑜𝑤_𝑢𝑡𝑖𝑙) show two DVFS strategies on workload Fig. 3 when the
deadline for one task is 0.6 s. 𝑃𝑜𝑙𝑖𝑐𝑦ℎ𝑖𝑔ℎ_𝑢𝑡𝑖𝑙 can save more energy
compared to 𝑃𝑜𝑙𝑖𝑐𝑦𝑙𝑜𝑤_𝑢𝑡𝑖𝑙.

Both strategies allocate a similar amount of time for the CPU to
run at low frequency/voltage (around 57% at 0.307 GHz and around
43% at 1.479 GHz). In this way, they consume a similar amount of
static energy (formula (4)). They differ in that 𝑃𝑜𝑙𝑖𝑐𝑦ℎ𝑖𝑔ℎ_𝑢𝑡𝑖𝑙 prioritizes
frequency reduction for periods with high average utilization (high avg
load), thus resulting in more dynamic energy consumption (formula
(3)).

We would like to trade the same performance loss for more energy
benefits. When uneven load distribution occurs, the DVFS governor
should give preference to periods with high average utilization for
downscaling with similar performance loss, which results in higher av-
erage CPU utilization. This is not possible for algorithmic architectures
similar to Linux’s built-in DVFS approach, which performs inference
based on short-time system characteristics.

4.3. Internal slack

The slacks discussed in the above examples all appear after the task
execution has finished. Due to the presence of IO blocks, slack can also
occur during the execution of a task.

Consider a scenario in which the system periodically performs
feature analysis on both photos and audio. The process of recording
audio is typically an IO-intensive calculation, which can then be used

to perform the photo analysis process. The photo analysis process can

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
Fig. 8. An internal slack example.

Fig. 9. Profiling of default Ondemand on the internal slack example.

Fig. 10. Fill the internal slack via Ondemand’s powersave_bias.

be slowed down to fill the slack caused by recording audio, thus saving
energy without compromising overall performance. The photo analysis
workload is still the face recognition program we used in previous
sections. The microphone recording is set to be 0.6 s. Figs. 8 and 9
show the pipeline of this example.

To handle this situation, the frequency governor should lower the
frequency in the early stages and raise it in the later stages.

If we use Ondemand to fill this slack, there will be an inevitable
performance loss (Fig. 10). This is because, in the built-in gover-
nors’ perspective, both the front and back sections are CPU-intensive
computations, and they should be treated equally.

In order to be able to fill the slack without losing performance, the
governor needs to further understand the characteristics of the task.
Fig. 11 shows such an example.

In fact, such internal slacks are common for IoT applications.
Modern IoT systems [1–5] contains a variety of sensors and network
calls. Longer slacks include microphone recording, video recording, etc.
Shorter slacks include temperature detection, etc.

4.4. Why extending this DVFS framework cannot cope with the three
patterns?

One CPU frequency control flow of the Linux built-in method can
be summarized as follows.
6

Fig. 11. Fill the internal slack without performance loss.

1. Collect system features for the past period. All three governors
consider only CPU utilization in this step. Ondemand and Conser-
vative use the calculation of CPU runtime divided by total time,
and Schedutil uses the PeLT metric provided by the scheduler.

2. Predict the events of the next period. All three governors predict
that the computational demand for a future period is consistent
with that of a past period.

3. Determine the CPU frequency for the next period using predicted
events. Taking Ondemand as an example, it selects the highest
frequency if the utilization is above a threshold. Otherwise, it
sets the frequency in equal proportion.

The three patterns we discuss in this section are difficult to handle
because the instance CPU utilization cannot capture the system state
for making a good frequency decision for a given workload with a
soft deadline. As shown in Figs. 4 and 11, instances with the same
measured utilization can be assigned different frequencies to reduce
energy consumption most effectively.

How can we make a DVFS governor aware of the difference between
computing requirements? An intuitive approach is to use more perfor-
mance counters, making the system characteristics complex enough to
distinguish. But there are two problems with doing so.

1. The usefulness of performance counters is specific to the work-
load. Adding extra performance counters may or may not help.
The workload in Fig. 11 will benefit from using the counters
provided by the microphone hardware, but that in Fig. 4 will
not benefit from using them. Whether the problem can be solved
by adding more performance counters is case-by-case, and it
is challenging to transfer a solution from one application to
another.

2. As the complexity of the inputs increases, it becomes more
challenging to develop control strategies. The Linux built-in
methods only use a value that logically ranges from 0 to 1
(CPU utilization) and designs some policies based on its explicit
meaning. When multiple counters are enabled as input, the
meaning of the input is no longer intuitive and even requires
some degree of data mining. We will need more powerful models
to handle the input, and the Linux kernel’s resource constraints
prevent it from supporting sophisticated mathematical models.

In summary, the DVFS algorithm that makes frequency scaling
decision based on the system features of the past period has difficulty
coping with the three patterns we discussed. We need a DVFS governor
that can understand the global workload computation demands.

5. Proposed method

In this paper, we design and implement a DVFS governor that
adapts to workload requirements to better address the three chal-
lenges mentioned above. The proposed method, like the Linux built-in
method, only requires the system to provide CPU utilization as input
and contains two important components:

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
Fig. 12. Encoding the observed time sequence to construct a state.

1. Temporal encoder: Construct a state based on the observed
sequence of features to better understand the progress of task
execution.

2. Reinforcement learning driven component: Develop a fre-
quency control strategy based on trial-and-error experience.

In this section we will present our design, and the method of
implementation, separately.

5.1. Temporal features of workload and learning

5.1.1. Understanding workload in terms of time
We observe that deadline-constrained periodic workloads have a

special feature. That is, the workload has a fixed deadline and peri-
odicity with stable tasks to run, which means a task run can be viewed
as an episode. This gives two inspirations.

1. The events that will take place for each execution are similar.
2. The DVFS governor can predict the events that will occur in

the future if it understands both the complete events to be
experienced and the events that have already occurred.

In addition, the CPU utilization and its corresponding frequency over a
period of time reflect the number of 0/1 bits flipped by the CPU. The
CPU frequency, utilization, and period experienced by the CPU imply
the progress of the task execution. For the DVFS governor, this is a
set of observed sequences. We want to mine the workload execution
information implicitly contained in this sequence to help the DVFS
governor better understand the task’s requirements.

5.1.2. Explicit temporal encoding
We first define the time series observed by the DVFS governor. For

a periodic soft deadline real-time system, the system executes a task
every T seconds. T is also used as the deadline of one task execution. A
DVFS governor, such as Ondemand or Conservative, performs frequency
adjustment according to a pre-defined period. For example, if a DVFS
governor is set to adjust the CPU frequency ten times per second, it
operates with a period of 0.1 s. In practice, a DVFS governor cannot
work strictly according to the set period. Some system events, such as
hanging at idle moments, can affect the length of a period. Therefore,
each period can be of variable length.

Without enabling additional performance counters for each period,
the DVFS governor observes the CPU utilization and CPU frequency
7

within that period. This paper considers time series consisting of these
observations. Fig. 12 (top portion) shows the format of a raw observed
sequence.

The time series experienced by DVFS governor is indefinitely long.
They contain intuitively useful information, but the question is how to
understand the time series and develop strategies that produce time
series resulting in low energy consumption. A previous work [30]
used a Recurrent Neural Network (RNN) for the adaptive processing
of time series. However, this leads to lengthy training times, poor
interpretability, and results in model architectures that are tuned to
task needs. While adaptive extraction of features is more in line with
the definition of AI, doing so relies on powerful learning algorithms.

In this work, we consider OS kernel-level code’s inherent effi-
ciency and reliability requirements and propose a method to develop
a lightweight and interpretable learning and inference scheme. We
extract information based on domain knowledge from an observed time
series to provide a highly interpretable and low-dimensional encoding
scheme. The pipeline is shown in Fig. 12.

A time series at time 𝑡 is encoded as 𝑠𝑡 = {𝑖𝑡, 𝑢𝑡, 𝑐𝑡, 𝑝𝑡}, shown in
Fig. 12. Next, we explain each component.

𝑖𝑡 denotes the observation of the past period. 𝑖𝑡 is to help the
governor predict the current position of workload. This information is
also used by the built-in DVFS method of Linux.

𝑢𝑡 denotes the average CPU utilization up to sampling point 𝑡 in
the current task period. 𝑢𝑡 is to help solve the problem of unbalanced
load distribution that occurs in multi-core architectures. In the case of
a similar performance impact of frequency tuning, priority is given to
downscaling the periods of high average utilization, which saves more
energy and shows an increase in the overall average utilization. This
information is mainly intended to serve the purpose of exploring DVFS
strategies based on reinforcement learning, which we will discuss in
detail in the next section.

𝑐𝑡 denotes task progress up to sampling point 𝑡 within the current
task period, ranging in [0, 1]. With the CPU performance alloca-
tion information, we introduce the time consumption progress 𝑐𝑡 =
𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑢𝑝 𝑡𝑜 𝑡𝑡ℎ 𝑝𝑒𝑟𝑖𝑜𝑑

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 . We want the DVFS governor to be able to
combine the use of 𝑝𝑡 (described below) and 𝑐𝑡 to understand the events
that have been experienced.

𝑝𝑡 is to help encode an abstract concept of ‘‘what events have hap-
pened and what events are to occur in the future’’ and make it concrete
into data that the DVFS governor can process. In a period, the CPU’s
frequency reflects how fast it flips 0/1 bits, and the CPU’s utilization
and frequency reflect how much workload has been completed. For a
sequence, separate statistics on the usage of each CPU frequency in each
utilization interval can give a guide to understanding how much work-
load has been completed. The allocated performance matrix shown in
Fig. 12 gives an example, where we count 3 frequency/voltage usages
with few utilization intervals.

Algorithm 2 Temporal encoder

1: INPUT: The observation of 𝑡𝑡ℎ period: (𝑓𝑟𝑒𝑞, 𝑢𝑡𝑖𝑙𝑎𝑣𝑔 , 𝑢𝑡𝑖𝑙𝑚𝑎𝑥), and
time consumption x during this period;

2: 𝑠𝑡−1 = {𝑖𝑡−1, 𝑢𝑡−1, 𝑐𝑡−1, 𝑝𝑡−1}, denoting the state for series from period
0 to 𝑡 − 1

3: OUTPUT: 𝑠𝑡, denoting the state encoded from period 0 to period t.
4: 𝑓𝑟𝑒𝑞𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑓𝑟𝑒𝑞−𝑓𝑟𝑒𝑞𝑚𝑖𝑛

𝑓𝑟𝑒𝑞𝑚𝑎𝑥−𝑓𝑟𝑒𝑞𝑚𝑖𝑛
.

5: 𝑖𝑡 = (𝑓𝑟𝑒𝑞𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 , 𝑢𝑡𝑖𝑙𝑎𝑣𝑔 , 𝑢𝑡𝑖𝑙𝑚𝑎𝑥).
6: 𝑢𝑡 = 𝑢𝑡−1 +

𝑥×𝑢𝑡𝑖𝑙𝑎𝑣𝑔
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 .

7: 𝑐𝑡 = 𝑐𝑡−1 +
𝑥

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 .
8: 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖𝑑𝑥 = the index of the utilization interval 𝑢𝑡𝑖𝑙𝑚𝑎𝑥 belongs to.
9: 𝑝𝑡 = 𝑝𝑡−1.

10: 𝑝𝑡[𝑓𝑟𝑒𝑞][𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖𝑑𝑥] = 𝑝𝑡[𝑓𝑟𝑒𝑞][𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖𝑑𝑥] +
𝑥

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 .
11: 𝑠𝑡 = (𝑖𝑡, 𝑢𝑡, 𝑐𝑡, 𝑝𝑡).

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
Fig. 13. Examples showing how states and rewards are calculated.
Overall, for a sequence, we encode its information explicitly into
four parts: 𝑢𝑡, 𝑖𝑡, 𝑐𝑡, and 𝑝𝑡. The pseudo-code is shown in Algorithm
2. Fig. 13 shows examples of how we encode the observed temporal
sequence into a state and how we assign a reward value to it. The
purpose of the encoded information is to include the cause for insuf-
ficient or excessive task execution performance. We next describe how
we use reinforcement learning to construct a DVFS policy based on this
information. Ideally, we would like to use reinforcement learning to
summarize which execution sequences lead to an encoding state with a
high reward value (low power consumption and satisfying performance
requirements), and the model can select actions during execution to
bring the encoded state closer to a final state with a high reward value.
8

5.1.3. Reinforcement learning driven policy development
One challenge in considering complex features in the CPU frequency

control process is how to map the information to the final decision. The
Linux strategy is to use features that are simple and explicitly contain
useful information. For example, in Ondemand, future frequencies are
linearly equated to the observed utilization. When the features under
consideration become complex, it becomes more challenging to de-
sign a heuristic strategy. We use reinforcement learning to summarize
control strategies from experience.

Reinforcement learning is a class of algorithms that observe the
reward values harvested from behaviors and then explore strategies
that can collect high reward values. In reinforcement learning, one

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
Fig. 14. Frequency scaling as a reinforcement learning scenario.

transition is defined as (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑟𝑡), where 𝑠𝑡 the current state,
𝑎𝑡 the action taken, 𝑠𝑡+1 the resulting state, and 𝑟𝑡 the immediate
reward assigned to (𝑠𝑡, 𝑎𝑡). A reinforcement learning algorithm uses
such transitions to update its value-action function, which is used to
evaluate the optimality of an action (the CPU frequency, in our case)
for a given state. Fig. 14 shows how to model CPU frequency scaling
as a reinforcement learning scenario.

Algorithm 3 reward calculation for 𝑠𝑡
1: Let 𝑇 denote the deadline for one execution.
2: Let 𝐹 denote the frequency table provided by hardware.
3: Let 𝑓𝑚𝑎𝑥∕𝑓𝑚𝑖𝑛 denote the max/min frequency supported in 𝐹 .
4: if 𝑠𝑡 is not the last state before the deadline reached then
5: 𝑟𝑡 = 0
6: else
7: if deadline missed then
8: 𝑟𝑡 = 0
9: else

10: 𝑥 = 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑑 𝑖𝑛 𝑓 𝑑𝑢𝑟𝑖𝑛𝑔 𝑇
𝑇

11: 𝑟𝑓𝑟𝑒𝑞 =
∑

𝑓∈𝐹
(1 −

𝑓3−𝑓3
𝑚𝑖𝑛

𝑓3
𝑚𝑎𝑥−𝑓3

𝑚𝑖𝑛
) × 𝑥

12: 𝑟𝑢𝑡𝑖𝑙 = the average CPU utilization during T
13: 𝑟𝑡 =

𝑟𝑓𝑟𝑒𝑞
2 + 𝑟𝑢𝑡𝑖𝑙

2

We want the model to develop an ideal policy by harvesting more
rewards for each workload. The principle of designing a reward at a
state is to reward a state that leads to low energy consumption, high
average utilization and satisfies deadline.

Our reward definition has three components: a reward for low-
frequency selection (considering energy), a reward for high CPU utiliza-
tion, and a penalty for exceeding the deadline (too low performance).
The reward value is 0 when the deadline miss occurs. Otherwise, the
reward ∈ [0, 1]. All transitions after the deadline miss are discarded.
The calculation of the reward is shown in Algorithm 2.

We design the reward to be sparse. Only at the end of the last
transition does the model receive the non-zero reward value. The model
will only receive a value of 0 as an immediate reward value in all other
transitions. We design it this way for two reasons.

• We want the model to predict a value ∈ [0, 1], which reduces the
possibility that the model parameters diverge for predicting large
values.

• Without prior knowledge, it is hard to tell if a workload will be
time out during its execution. In this case, if we want to assign
an immediate reward, we can only confer rewards from the point
of view of energy consumption for all the transitions before the
deadline miss. We observe that this leads to a rapid tendency of
the model to choose low frequencies, thus increasing the learning
difficulty.
9

This reward value can be considered a heuristic energy consumption
measure. The ideal way is to use the actual energy consumption, but
measuring the energy consumption with high accuracy in a short time
requires special hardware support. Therefore in this work, we use this
heuristic measure.

For any reinforcement learning problem, there is a need for a
model to learn an action-value function. Array-based Q Learning [36] is
popular in system design for its easy implementation and low overhead.
However, since our state is continuous and large, we need a function
approximator to reduce the memory footprint and speed up learning.

Specifically, in our scenario, the temporal encoder encodes the
sequence as a vector of length six, and each element belongs to 0 to
1. If we use table-based reinforcement learning (e.g., Q Learning), our
first step is to discretize the state consisting of floating-point numbers
so that it can be stored in a limited space. This brings up two questions:

1. The state space is likely to remain huge. Suppose we discretize
each element of the vector to ten values, then the size of the
entire state space is 106, which is unaffordable in kernel space.

2. It is not easy to judge whether a discrete solution is good
enough. If the discrete method is too fine-grained (for example,
discretizing each vector element to ten values), it will lead to
high memory usage and low learning efficiency. If the discrete
method is too coarse (for example, discretize each element of
the vector to three values), it may result in the information
contained in the state being ignored.

It is worth mentioning that for standard table-based Q Learning,
each state has its own Q Value, which means that learning based on one
set of data cannot be applied to the knowledge of other states. As an
example, the information contained in states 96 and 97 may be close,
but since their Q values are stored separately, states 96 and 97 are two
completely different states in terms of model learning, and thus may
lead to a decrease in learning efficiency. Using a function approximator
(e.g., a neural network) can improve these problems, as it can:

1. Process floating-point numbers with a pre-defined memory size
(the approximator’s parameter size).

2. Improve data utilization, since each update involves the parame-
ters of the entire approximator (e.g., one backpropagation of the
neural network). In this approach, an update to one state allows
similar states to be updated as well.

We use the Double Deep Q-Network (DDQN) model [37], which
uses a neural network as the action-value function and a target network
during training to reduce the overestimation of actions.

This method will eventually train a neural network that reads the
state input and predicts the reward value that the candidate action will
receive.

5.2. Implementation

Similar to [30], our work only implements the decision component
at the kernel level. The learning component is implemented at the user
level with data collected by the in-kernel profiler. Thus, the kernel state
is only burdened with little inference overhead.

Our work further reduces the overhead by applying quantization
[31], with which the kernel can avoid floating-point calculation. As
of today, the Linux kernel does not recommend the use of floating-
point calculations. A complete integer-based kernel-state code would
increase security (avoid breaking Linux design principles), enhance
method pervasiveness (some low-end CPUs do not support floating-
point computation), and reduce inference overhead on devices that are
poorly optimized for floating-point computation. The training pipeline
is shown in Fig. 15. for states that are numerically close has been shown
to be detrimental to the training of reinforcement learning models.

We used a simple quantization technique. With the state/reward
design (all values are within [0, 1]), the parameters of the model and

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
Fig. 15. The user-kernel interleaving training framework with quantization.

the values generated during calculation are within the range of [−10,
10]. We quantize all the values into [−230, 230], and store them in 32-bit
datatype (int in C). More advanced quantization techniques can further
leverage the range of parameters and the datatype used, thus increasing
the precision and reducing the memory footprint on huge-size mod-
els [31]. In our case, the model is small (around 150 parameters). We
do not choose a more advanced quantization technique considering the
expense of a more complicated code architecture needed for further
optimization.

In this work, we implemented our proposed governor in the kernel
from scratch, including:

1. A Linux C standard Neural Network engine, which can read the
NN model resulting from the training by PyTorch in the user
state and make inference based on this NN model inside the
Linux kernel.

2. An integer-based CPUFreq governor running under the CPUFreq
framework that can be compiled as a Linux kernel module using
the above engine for inference.

3. A ring-buffer-based event profiler embedded inside CPUFreq
governor.

4. A CPU frequency control visualization tool to visualize the infor-
mation extracted by the above profiler.

5. A set of protocols for the communications between the kernel
space and the user space and control of the periodic workloads.

6. A framework that assembles the above-mentioned modules to
experiment with the proposed method in this work.

With the interactive training-inference framework Fig. 15, the
amount of code added to the kernel internals is reduced, and there is
no training overhead at the kernel level. We implement a quantization-
enabled neural network engine to read the model parameters generated
by user-state PyTorch training and make inferences in the kernel. The
engine has a lean amount of code and is easy to compile into the Linux
kernel. The codebase can be found at: https://github.com/coladog/
tinyagent. Please refer to the project documents for more details of how
we generate models from PyTorch and make inferences inside the Linux
kernel, as well as the implementation of the quantization technique.
10
Algorithm 4 Kernel-state inference module
1: Initialize action-value function 𝑄 with parameters 𝜃 trained in user

space.
2: Initialize observed sequence 𝜙 = [].
3: for each sampling period do
4: Calculate last period’s observation: (𝑓𝑟𝑒𝑞, 𝑢𝑡𝑖𝑙𝑎𝑣𝑔 , 𝑢𝑡𝑖𝑙𝑚𝑎𝑥), and

the time spent during this sampling period.
5: Encode state 𝑠 according to Algorithm 2.
6: 𝑓𝑟𝑒𝑞𝑛𝑒𝑥𝑡 = 𝑚𝑎𝑥𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑟𝑒𝑞𝑄∗(𝑠, 𝑎𝑐𝑡𝑖𝑜𝑛_𝑓𝑟𝑒𝑞; 𝜃).
7: if training required then
8: Generate one random number 𝑣 ∈ [0, 1].
9: if 𝑣 > 𝜖 then

10: 𝑓𝑟𝑒𝑞𝑛𝑒𝑥𝑡 = a random frequency.
11: Apply 𝑓𝑟𝑒𝑞𝑛𝑒𝑥𝑡.
12: Add (𝑠, 𝑓𝑟𝑒𝑞𝑛𝑒𝑥𝑡) into 𝜙.
13: if training required then
14: Output 𝜙 into user space.

5.3. Training

Algorithm 5 User-state training module
1: Load action-value function Q with parameter 𝜃.
2: Initialize target function parameter 𝜃′ = 𝜃.
3: Load replay memory D.
4: Fetch newest training data 𝜙 output by kernel space, convert each

node into a transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1), and then add it into D.
5: Construct training pool B from D.
6: for each batch (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in B do
7: if 𝑠𝑡+1 is non-terminal then
8: 𝑦𝑡 = 𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎; 𝜃); 𝜃′).
9: else

10: 𝑦𝑡 = 𝑟𝑡.
11: Perform a gradient descent step on (𝑦𝑡 −𝑄(𝑠𝑡, 𝑎𝑡; 𝜃))2.
12: Every C steps reset 𝜃′ = 𝜃.
13: Output quantized 𝜃 into kernel space.

The kernel state module observes new data at each step, encodes it
into the current system state through the temporal encoder, and then
uses Q Net to determine which action (frequency) will result in a larger
reward. Meanwhile, in the training phase, it randomly selects actions
to explore different strategies according to certain odds and sends the
observed sequences to the user state module. The module in the user
state collects the sequence data provided by the kernel state, calculates
its corresponding reward value, and then uses a reinforcement learning
algorithm to train the Q Net and return the updated parameters to
the kernel state. Through this interactive step, we finally implant a
governor in the kernel state that understands workload requirements
and saves energy while satisfying performance.

Algorithm 4 and Algorithm 5 describe the training process using the
interleaving framework. In the kernel state, the CPUFreq framework
initializes an integer-based neural network (Q Net), reads the model
parameters derived from the user state, and infers frequency actions
based on this network at runtime. In addition, the kernel state module
records the data observed during runtime and exports it to the user
state for training at the end of the run. The user-state training module
updates the model parameters according to the Double Deep Q-Network
(DDQN) training method after loading the training data and model
parameters.

In the process of generating the training pool (line 5 in Algorithm
5), we use the idea of prioritized experience replay [38]. The native
experience replay pool considers each experience to be of equal prior-
ity, while the prioritized experience replay pool [38] considers some

https://github.com/coladog/tinyagent
https://github.com/coladog/tinyagent
https://github.com/coladog/tinyagent

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
Table 1
Experiment settings.

Hardware Nvidia Jetson Nano 2GB Board

OS Linux 4.9
Energy measurement Board-wide energy consumption measured

by a power meter
Optimizer Adam with 0.001 learning rate
Batch size 16
Target Net updating
frequency (C in algorithm
5)

per 32 batch learning

NN structure 7-8-8-1 with ReLU activation function
Utilization intervals used
in encoding

{[0%, 60%], (60%, 100%]}

Sampling rate 20000 ms, 50 times per second
Action randomly pick rate
during training

0.7 at the first 50 episodes, 0.5 at the next
50 episodes, and then 0.3 till the end

data to be more worthy of learning, and thus purposefully selects some
high-priority experience when constructing training data.

We divide the experience pool into 10 buckets and add a sequence
of transitions to the corresponding bucket according to the reward
received. For example, when we have a sequence with reward = 0.27,
then the sequence will be added to the 3rd bucket, which contains the
sequences with reward ∈ [0.2, 0.3). For each training pool construction,
we will randomly take out 64 sets of sequences from each bucket and
construct a training dataset using the transitions contained. With this
approach, the model can learn a variety of experiences with different
reward levels in one training step.

6. Experimentation

Learning an embedded control algorithm (a frequency control gov-
ernor) for operating system kernels has not been widely explored by
the industry or open-source community. Therefore there is a lack of
open-source support. Our work has to build tools from scratch for
efficient profiling, in-kernel inference, and frequency control policy
visualization.

6.1. Experimental setup

We first verify whether our approach can better address the patterns
we discussed in Section 4. The experiment settings can be found
in Table 1. Two complex self-designed workloads are used for this
purpose.

1. FaceRecog : The system periodically reads a photo and then iden-
tifies the faces’ location. Image reading and pre-processing are
done in a single thread, and face recognition is done in multiple
threads. Figs. 3 and 5 show the frequency tuning of this work-
load under Ondemand. The image processing is implemented
based on OpenCV [39].

2. AudioRecog : The system periodically performs an audio record-
ing while running the FaceRecog workload and performs feature
extraction on an audio clip after the recording is finished. The
audio analysis is implemented based on PyAudioAnalysis [40].
Figs. 8 and 9 show the pipeline and the frequency tuning of this
workload under Ondemand.

We also validate our approach on publicly available workloads with
hidden implementation details. In this step, we use four workloads
provided by MiBench [41]: bitcount, susan, dijkstra and typeset.

On FaceRecog, we train three sets of models corresponding to 0.6 s,
0.9 s, and 1.2 s deadlines, respectively. On AudioRecog, we train three
sets of models corresponding to 1.0 s, 1.3 s, and 1.6 s deadlines, and
with 0.6 s, 0.9 s, and 1.2 s microphone recording time, respectively.

We compare our approach with all DVFS governors (Performance,
Ondemand, Schedutil, Conservative) currently supported by Linux, except
11
Fig. 16. Reward curve with five training on FaceRecog (left) and AudioRecog (right).

Fig. 17. Three reward curves with single training on FaceRecog.

Fig. 18. Execution time curve with five training on FaceRecog.

for Powersave, which just sets the frequency to the lowest level and thus
can only be used in the extreme case.

Our experimental environment is the Nvidia Jetson Nano Board.
Our method uses two frequency options (1.479 GHz and 0.307 GHz)
with different voltages. However, more frequency levels must be en-
abled for Linux built-in methods, even with the same voltage support.
For Ondemand, after calculating the logical frequency based on 𝑚𝑖𝑛𝑓 +
(𝑚𝑎𝑥𝑓 −𝑚𝑖𝑛𝑓) × 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, it will lookup for a frequency supported by
hardware that is below or at the logical frequency. In this case, if it only
has two frequency support, unless the utilization is 0, it will always
choose the higher one. Conservative and Schedutil also require fine-
grained frequency support for similar reasons. Therefore, we enable
full frequency support for the Linux built-in methods, even though the
hardware supports only two voltage levels.

6.2. Reward curve

After each training, we executed the workload five times using the
latest model and then counted its average harvested reward value.
Fig. 17 shows three separate training on FaceRecog with 0.6 s deadline.
Since training for reinforcement learning is subject to randomness
(random selection of actions to explore, random learning of data), a
common measure of learning quality is to take the reward curve of
multiple learning sessions and count their mean and standard deviation.
Fig. 16 shows the result on FaceRecog and AudioRecog, with 0.6 s
deadline and 1.0 s deadline separately. Our method demonstrated the
ability to harvest more reward value in training.

6.3. Deadline awareness

We also evaluate the task execution time under the policy after
each training step five times and take the average. Figs. 18 and 19
show the mean and standard deviation of the execution time curves
based on five training sessions. Our method perceived the need for
deadlines very well. It is worth mentioning that for each deadline,

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
Fig. 19. Execution time curve with five training on AudioRecog.

Fig. 20. Frequency policy developed by proposed method on FaceRecog with 0.6 s
(top) and 1.2 s (bottom) deadline respectively.

our method receives only one numerical value (for example, 0.6
for 0.6 s deadline), but can generate a DVFS strategy accordingly
that respects the deadline. In our experimental setting, the governor
uses only two frequency values. It cannot drop the overall frequency a
little to accommodate the performance change (e.g., from 1.479 GHz to
1.428 GHz). Adaptation to deadline requires it to combine the only two
frequency options available. It takes it upon itself to relate this abstract
value to performance requirements and make policy adjustments.

6.4. Learned policy

An important contribution of this work is visualizing the CPU
frequency control process within the kernel for any workload with any
given strategy. The visualization helps us understand and compare the
differences between the policies and the learning process.

Through visualization, we observed that the proposed approach
smartly learned very different strategies with the same workload when
the deadline changed. Fig. 20 shows an example. For different dead-
lines, although the maximum utilization among cores was close to
100% throughout the execution, low frequencies were set to save
energy without exceeding the deadline.

The visualization showing the frequencies, max utilization, and
average utilization together at each observation point allows us to
observe when the choices of low frequency or high frequency occur.
For Figs. 20 and 21, we use the yellow bar to indicate the range with
mostly low frequency and the pink bar to indicate the range with high
frequency. For the 0.6 s deadline, we observe that the model preferred
to choose the low frequency in periods with high average utilization
(yellow bars). In this case, the strategy chooses the high frequency for
periods with low average utilization (pink bars). For the 1.2 s deadline,
a large number of low frequencies were adopted due to the reduced
performance requirements. For this workload, our proposed method
showed the ability to use coarse-grained frequency support to fill the
slack as well as to optimize overall CPU utilization.

The AudioRecog workload is designed to test if our approach is able
to learn additional hidden abstract information: the existence of an
12
Fig. 21. Frequency policy developed by proposed method on AudioRecog with 1.0 s
(top) and 1.3 s (bottom) deadline, and 0.6 s (top) and 0.9 s (bottom) microphone
recording, respectively.

internal slack. At the highest speed (1.479 GHz), with 0.6 s microphone
recording, it takes around 0.88 s to finish one request. We assigned
a 1.0 s deadline, which means there is about 0.12 s slack after the
request is finished at the highest speed. Also, there are around 0.28
s internal slack before the microphone recording is finished. In the
developed policy (Fig. 21 top), the proposed method exhibits the ability
to preferentially select high average utilization periods to reduce the
frequency (yellow bars). At the same time, it drops the frequency
heavily during the internal slack (yellow bar) and boosts it at the end
(green bar), although both intervals exhibit an average utilization close
to 100%. For 1.3 s deadline with 0.9 s microphone recording, the
proposed method adjusts its policy (Fig. 21 bottom) with the change
of performance settings.

6.5. Energy saving

As shown in Fig. 22, 23 and 24, our approach can self-develop DVFS
policies to accommodate all chosen workloads (including self-designed
workloads and workloads from MiBench) with different deadlines.
The longer the deadline, the more energy-efficient our approach is
compared to the built-in Linux approach.

In these figures, each row represents the results for one particular
workload. Each column corresponds to one specific deadline. Each bar
has the format of governor (running time) to represent the average time
to complete the workload under the given governor for the particular
workload (indicated by row) and the particular deadline (indicated by
column). To save chart space, we use the first three initials of the
governor’s name instead of its full name, e.g., Pro. means our Proposed
method. The length of the bar indicates the normalized energy consump-
tion. Each case’s normalized energy consumption is shown at the top
of the bars. We can observe that the proposed method consumes the
least energy in almost all cases. Take the FaceRecog example, the energy
consumption is 88%, 80%, and 72% compared to the Performance
governor for deadline = 0.6s, 0.9 s, and 1.2 s, respectively. For energy
saving for other workloads and deadlines, please refer to Figs. 23 and
24.

On Mibench workloads, with performance slack ranging from 0.04
s to 0.4 s, the proposed method can save 3%–11% more energy com-
pared to Ondemand. On FaceRecog, with performance slack ranging
from 0.27 s to 0.87 s, the proposed method can save 5%–14% more
energy compared to Ondemand. On AudioRecog, with performance slack
ranging from 0.11 s to 0.12 s, the proposed method can save 12%–
14% more energy compared to Ondemand. Note that for AudioRecog,
the energy-saving opportunity mostly comes from the internal slack.

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
Fig. 22. Power consumption on FaceRecog with ddl = 0.6 s, 0.9 s, 1.2 s, from left to
right respectively.

Fig. 23. Power consumption on AudioRecog with ddl = 1.0 s, 1.3 s, 1.6 s, from left
to right respectively.

Fig. 24. Power consumption on MiBench workloads at various deadlines.

6.6. Inference time overhead

The time overhead of the proposed method consists of constructing
the system state and then reasoning about the state using the RL model.
We measure the time overhead by timing the execution of this block of
code in the kernel. The associated time overhead is influenced by two
factors: The frequency at which the CPU is running when performing
inference and the number of tasks that the relevant cores are processing
concurrently.
13
Fig. 25. Deadline missing test.

For a fair measure, on Nvidia Jetson Nano 2 GB Board, we run a task
with 100% CPU utilization on the core on which the DVFS governor is
running and then measure the time overhead of running the proposed
method at 1.479 GHz and 0.307 GHz, respectively. For 1.479 GHz, we
collected 1033 sets of data, and the average time overhead is 25.62 us.
For 0.307 GHz, we collected 1583 sets of data, and the average time
overhead is 41.05 us. We believe this is low enough overhead.

6.7. Deadline missing

For the two self-constructed workloads with three separate dead-
lines, we execute them 1000 times using a policy generated by rein-
forcement learning, and count the number of timeouts. The result is
shown in Fig. 25. First, the time taken to execute workload per policy
is very stable, as reflected by the low standard deviation (0.08–0.048).
When the average time taken to execute a workload is very close to
a given deadline, it will miss the deadline in about 20% of the cases.
For example, for FaceRecog, at 0.6 deadline, the generated policy took
0.59 s to execute the workload once on average, and 16.1% of the runs
timed out. We also note that the deadline timeout is only concentrated
within 5%, which is 0.03 s for a 0.6 s deadline. Such a small number
of timeouts can be considered as fluctuations caused by system events,
and we believe that such results are good enough for soft real-time
requirements.
7. Compare with using RNN for end-to-end learning

Our previous work [30] used Recurrent Neural Network (RNN)
to provide end-to-end learning. This section discusses the difference
between this work and the RNN-based model and explains why we
want to use this encoding-based system. For end-to-end learning, an
RNN is used to process the observed workload sequences and generate
encoded inputs into the Q Net. No human knowledge is involved
in this approach. In our previous work, for some simple workloads,
on a hardware environment that supports ten fine-grained frequency
support, the RNN approach can find a policy that sets the frequency as
low as possible for the overall execution of the task without timeouts.

In this work, our target platform is embedded devices oriented to
workloads containing three challenging features (coarse-grained f/V,
unbalanced load distribution among cores, and workload having inter-
nal slack). Our testbed is the Jetson Nano Board.

We conduct a set of experiments here to compare the differences
between the two schemes in this embedded device. Our encoding
method encodes a feature of length 6 from the workload sequence. In
the scheme using RNN, we use a GRU (Gated Recurrent Unit) with
input size 3 and hidden vector size 6, to automatically encode the
workload sequence into a feature of length 6. Note that the feature
lengths extracted by these two methods were set to be the same. The
extracted features and candidate frequency action are processed, then

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
Table 2
Workloads used.

FaceRecog Self-constructed, including unbalanced load

AudioRecog Self-constructed, including unbalanced load and
internal slack

Mibench Four workloads are used: bitcount, susan, dijkstra and
typeset

Fig. 26. Training encoding-based learning (left, 300 episodes) and RNN-based learning
(right, 1200 episodes) with large training pool size.

input to a fully connected neural network (Q Net) of size 7-8-8-1. An
evaluation of that frequency action results from the Q Net processing.
The training parameters and methods are the same for both schemes,
as shown in Table 2. The workload we use is FaceRecog with a 0.6 s
deadline.

We first train the RNN-based learning the same way as the encoding-
based method. For each new episode of experience collected, 64 sets
of experiences are selected from each level of the experience pool
and divided by reward level for training. Fig. 26 shows the change
in execution time of the workload during learning. The encoding-
based scheme demonstrates the ability to quickly sense the deadline
(good strategies were developed with only 100 episodes) and maintain
an understanding of requirements in subsequent training. In contrast,
despite learning 1200 episodes, the RNN-based approach shows no
signs of approaching the deadline.

We further tune the training of the RNN scheme by changing the
amount of the data used for training. This time, 10 sets of experiences
are selected from each experience pool bucket with level >= 5, and 3
sets of experiences are selected from each bucket with level < 5.

This time, for training the RNN-based method, we noticed much
better results. Fig. 27 shows three learning curves. One observation is
that the RNN-based training method is unstable. Sometimes it shows
a good perception of the deadline requirements (the figure on the left
in Fig. 27), and sometimes a poorer perception (the figure on the right
in Fig. 27). In contrast, the learning curves generated by the proposed
encoding-based method are consistently similar to Fig. 28.

The RNN-based scheme can sometimes extract some strategies close
to the ideal answer (the two policies on the left are visualized in
Fig. 27). However, these models eventually could not meet the deadline
requirement and kept exporting timeout policies. Extended training
time would not help either (as shown in Fig. 29). We also trained
the RNN-based method on AudioRecog, and it shows similar patterns
(Fig. 30). For the challenging scenarios discussed in this paper, the
RNN-based method demonstrates the ability to summarize knowledge
to some extent, but not optimized. An example is shown in the middle
figure in Fig. 30, where the model continuously generates policies that
always set the highest frequency (1.479 GHz) so as not to trigger a
timeout but does not take advantage of the energy saving opportunity
provided by the internal slack.

A problem that should not be overlooked is that during training, the
RNN-based approach needs to process the complete observed sequence
to obtain a feature. In contrast, the encoding-based approach can
14
Fig. 27. Training RNN-based method on FaceRecog with 0.6 s deadline after tuning.

Fig. 28. Training encoding-based method with smaller training pool size.

Fig. 29. Training RNN-based method with 1200 episodes.

directly read the saved encoded features. This is because for RNN, each
training changes its parameters and thus the extracted features, so the
training requires reprocessing the sequence to get the new features.
In contrast, the features generated by encoding schemes based on
human knowledge are fixed and do not need to be recomputed. For

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
Fig. 30. Training RNN-based learning on AudioRecog with 0.6 s internal slack and 1.0
s deadline.

Fig. 31. Training overhead increases as the length of workload increases.

a workload sequence of length N, one complete learning would require
RNN processing 1 + 2 + 3 + ⋯⋯ + 𝑁 = 𝑁×(𝑁+1)

2 times data. This
overhead grows as the length of the workload grows. For the rule-based
encoding scheme, this computational overhead does not exist.

For the network structure used in this experiment, the comparison of
training time is shown in Fig. 31. When the workload length is 10, the
training time of the RNN-based scheme is about 2.9 times higher than
that is based on encoding. When the workload length changes from
10 to 100, the RNN-based training overhead increases by a factor of
about 45 and the encoding-based overhead only increases by a factor of
about 9.8. The training time with the expert-knowledge-based encoding
scheme is much smaller and grows much more slowly.

The first reason we want to explore the encoding-based
method over RNN-based is the low interpretability of neural net-
work models. Up to now, the interpretability of neural networks is
still poor. There is no obvious better way to improve a model except by
15
adjusting the structure and making the experimental comparison. In ad-
dition, it is difficult to analyze the meaning of the data contained in the
features encoded by the neural network from the human perspective.
Therefore it is difficult to intervene in its learning process. It is possible
to achieve a better result by adjusting the RNN model structure
and training method. However, even if an ideal RNN structure is
tuned for a workload, we cannot be sure that it can handle more
complex features. We successfully processed simple workloads with
RNN in a hardware environment that supports fine-grained frequency
options in the above experiments. The same approach does not work
well when dealing with the more challenging patterns discussed in this
work. When the workload becomes even more complex, such as multi-
tasking with multiple deadlines, the demands on the learning model
will be higher. That is unless an extremely powerful model is fixed
(which also implies a significant inference overhead), the user may
need to adapt the model structure based on the workload, which is
against the original purpose of wanting it to be adaptive.

Our encoding scheme can be seen as extracting valuable information
from the raw data based on expert knowledge and then handing it
over to a machine-learning model to map to the final control. In this
approach, the main information extraction task is performed by human
experts, thus reducing the reliance on machine learning structures. At
the same time, such an approach provides a degree of interpretability:
we can control and analyze the information perceived by the model
by adjusting the encoded information. Our experiments demonstrate
that the reinforcement learning model can generate good frequency
control policies quickly and consistently based on the encoding scheme
we designed.

Another reason is the training overhead. As we discussed, the
overhead of training an RNN-based model is much larger than that
of training an encoding-based model. Our aim is to provide fast and
lightweight learning on small devices. Excessive computational com-
plexity prolongs learning time and is also a challenge for the device’s
heat dissipation capability.

8. Related work

Jung et al. [18] used a Bayesian classifier, which is trained offline,
to predict the performance and power dissipation of the processor for
incoming tasks. The features considered include task priority, queue
occupancy, and arrival rate of the task. A policy table calculated offline
by dynamic programming was used to map the predicted state to V/f
action. Conradihoffmann et al. [30] used the Performance Monitoring
Unit (PMU)s provided by the Cortex-A53 processor to offline analyze
the correlation between performance counters (Bus Access for Memory
Write, Read Alloc Mode, CPU Cycle, etc.) and target task’s execution
time. An ANN model, which can learn online, was used to take in
the selected features and predict task utilization. A set of heuristic-
based rules were designed to use the ANN prediction results to adjust
the frequency while balancing the load. Park et al. [20] focused on
developing highly interpretable solutions. They analyzed the tradeoff
between precision and interpretability of various ML models on a
dataset of mobile gaming workloads. Tree-based linear models were fi-
nally selected and implemented to improve CPU/GPU utilization while
achieving the target Frames-per-Second (FPS). Das et al. [21] used a
statistical method to detect the application change point, along with
an RL-based run-time manager and a hierarchical approach for V/f and
thermal management.

Ul et al. [25] used Q learning, a popular RL algorithm, to switch
existing DVFS methods dynamically. Based on the previous work,
Ramegowda et al. [42] implemented and validated the hybrid DVFS
method in various embedded devices running the Linux system. Wang
et al. [27] used Double Q learning to explore the energy-performance
optimization for both CPU core and uncore parts. Specifically, they used
the instruction per cycle (IPC), and the misses per operation (MPO) [43]

𝐼𝑃𝐶3
as the
as the state measurement of the environment and used 𝑊

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
reward to describe the tradeoff between energy and performance.
Although it was for high-performance computing, the goal was close to
an embedded computing scenario: to be as energy-efficient as possible
while meeting a global deadline. Shafik et al. [28] proposed a learning
transfer-based adaption method, so the Q learning model, which only
uses the CPU cycles in the last period as the system state, will not have
to learn from scratch again when workload changes, thus reducing the
convergence time.

In Section 7, we compared the proposed temporal encoder-based
approach with the RNN-based approach previously proposed [30].
However, we have not been able to find other similar studies that can
be fairly compared the results. We next explain why based on three
recent studies [19,27,44]. The works done by Gupta et al. [44] and
Hoffmann et al. [19] can be seen as extending the architecture of Linux
built-in methods by using more counters (Linux built-in methods use
only utilization) to predict more events (Linux built-in methods assume
the future period’s utilization is the same as the past one), and design-
ing corresponding rules to map the data to the frequency selection. The
biggest challenge of comparing to Gupta’s approach is that they did the
experiments in a architecture simulator, and there is often a huge gap
between the real system kernel environment and a simulator. [19] has
done experiments on real systems and hardware. Unfortunately, there is
no publicly available code and tuned parameters. And thus, it is difficult
to reproduce the corresponding engineering implementation based on
the paper description alone to have a fair comparison. Wang et al. [27]
implemented their method in userspace and used user-state tools to
collect information for states and rewards. Due to the overhead of user-
level data collection, the work sets their frequency sampling rate at the
sec-level, which would not work in our cases as the execution time of
the workload we consider on embedded devices is short. None of the
above works consider temporal encoding to optimize frequency scaling
by learning the task execution sequences.

9. Conclusion

This work focus on energy saving for periodic systems constrained
by the deadline on small devices. We identify three system patterns that
may make Linux’s built-in and similarly structured DVFS algorithms
less effective. We presented a reinforcement learning-driven DVFS gov-
ernor using explicit temporal coding as input and experimented with
it on an Nvidia Jetson Nano Board. Our solution does not require
an a priori model of the workload and devices architecture, which
makes it practical and simple to deploy. This is similar to the long-
established and well-tested Linux built-in systems. Our reinforcement
learning method can derive a governor without introducing additional
performance counters but can distinguish states with the same instance
utilization through rapid profilings and learning with temporal encod-
ing. The governor derived better addresses the three system patterns we
identified and quickly adapts to six different applications and various
performance requirements settings.

Compared to the built-in Linux approach, the derived governor is
able to leverage performance slack, save more energy, and place only
a very small inference overhead burden.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
16

Data will be made available on request.
Acknowledgments

This work is supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

References

[1] M. Taneja, N. Jalodia, P. Malone, J. Byabazaire, A. Davy, C. Olariu, Connected
cows: Utilizing fog and cloud analytics toward data-driven decisions for smart
dairy farming, IEEE Internet Things Mag. 2 (4) (2019) 32–37.

[2] D. Brunelli, A. Albanese, D. d’Acunto, M. Nardello, Energy neutral machine
learning based iot device for pest detection in precision agriculture, IEEE Internet
Things Mag. 2 (4) (2019) 10–13.

[3] P.M. Chintanpalli, S. Yenuganti, M. Guizani, IoMT and DNN-enabled
drone-assisted COVID-19 screening and detection framework for rural areas.

[4] R. Togneri, C. Kamienski, R. Dantas, R. Prati, A. Toscano, J.-P. Soininen, T.S.
Cinotti, Advancing IoT-based smart irrigation, IEEE Internet Things Mag. 2 (4)
(2019) 20–25.

[5] Y. Sahraoui, C.A. Kerrache, A. Korichi, B. Nour, A. Adnane, R. Hussain, DeepDist:
A deep-learning-based IoV framework for real-time objects and distance violation
detection, IEEE Internet Things Mag. 3 (3) (2020) 30–34.

[6] F. Reghenzani, A. Bhuiyan, W. Fornaciari, Z. Guo, A multi-level DPM approach
for real-time DAG tasks in heterogeneous processors, in: 2021 IEEE Real-Time
Systems Symposium, RTSS, IEEE, 2021, pp. 14–26.

[7] B. Ranjbar, T.D. Nguyen, A. Ejlali, A. Kumar, Power-aware runtime scheduler
for mixed-criticality systems on multicore platform, IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 40 (10) (2020) 2009–2023.

[8] D. Zhu, R. Melhem, B.R. Childers, Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multiprocessor real-time systems, IEEE
Trans. Parallel Distrib. Syst. 14 (7) (2003) 686–700.

[9] A. Bhuiyan, Z. Guo, A. Saifullah, N. Guan, H. Xiong, Energy-efficient real-time
scheduling of DAG tasks, ACM Trans. Embed. Comput. Syst. (TECS) 17 (5) (2018)
1–25.

[10] A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, N. Guan, Z. Guo, Energy-efficient
parallel real-time scheduling on clustered multi-core, IEEE Trans. Parallel Distrib.
Syst. 31 (9) (2020) 2097–2111.

[11] Z. Guo, A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, N. Guan, Energy-efficient
real-time scheduling of DAGs on clustered multi-core platforms, in: 2019 IEEE
Real-Time and Embedded Technology and Applications Symposium, RTAS, IEEE,
2019, pp. 156–168.

[12] A. Saifullah, S. Fahmida, V.P. Modekurthy, N. Fisher, Z. Guo, CPU energy-aware
parallel real-time scheduling, in: Leibniz International Proceedings in Informatics,
Vol. 165, 2020.

[13] A. Paolillo, J. Goossens, P.M. Hettiarachchi, N. Fisher, Power minimization for
parallel real-time systems with malleable jobs and homogeneous frequencies,
in: 2014 IEEE 20th International Conference on Embedded and Real-Time
Computing Systems and Applications, IEEE, 2014, pp. 1–10.

[14] J. Huang, H. Sun, F. Yang, S. Gao, R. Li, Energy optimization for deadline-
constrained parallel applications on multi-ECU embedded systems, J. Syst. Archit.
132 (2022) 102739.

[15] Z. Li, S. Ren, G. Quan, Energy minimization for reliability-guaranteed real-time
applications using DVFS and checkpointing techniques, J. Syst. Archit. 61 (2)
(2015) 71–81.

[16] M. Qiu, Z. Ming, L. Jiayin, S. Liu, B. Wang, Z. Lu, Three-phase time-aware energy
minimization with DVFS and unrolling for chip multiprocessors, J. Syst. Archit.
58 (10) (2012) 439–445.

[17] H. Sobhani, S. Safari, J. Saber-Latibari, S. Hessabi, REALISM: Reliability-aware
energy management in multi-level mixed-criticality systems with service level
degradation, J. Syst. Archit. 117 (2021) 102090.

[18] H. Jung, M. Pedram, Supervised learning based power management for multicore
processors, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29 (9) (2010)
1395–1408.

[19] J.L.C. Hoffmann, A.A. Fröhlich, Online machine learning for energy-aware
multicore real-time embedded systems, IEEE Trans. Comput. 71 (2) (2022)
493–505, http://dx.doi.org/10.1109/TC.2021.3056070.

[20] J.-G. Park, N. Dutt, S.-S. Lim, An interpretable machine learning model enhanced
integrated CPU-GPU DVFS governor, ACM Trans. Embed. Comput. Syst. (TECS)
20 (6) (2021) 1–28.

[21] A. Das, G.V. Merrett, M. Tribastone, B.M. Al-Hashimi, Workload change point
detection for runtime thermal management of embedded systems, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 35 (8) (2015) 1358–1371.

[22] Y. Tan, W. Liu, Q. Qiu, Adaptive power management using reinforcement
learning, in: 2009 IEEE/ACM International Conference on Computer-Aided
Design-Digest of Technical Papers, IEEE, 2009, pp. 461–467.

[23] W. Liu, Y. Tan, Q. Qiu, Enhanced Q-learning algorithm for dynamic power
management with performance constraint, in: 2010 Design, Automation & Test
in Europe Conference & Exhibition, DATE 2010, IEEE, 2010, pp. 602–605.

http://refhub.elsevier.com/S1383-7621(23)00134-0/sb1
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb1
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb1
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb1
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb1
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb2
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb2
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb2
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb2
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb2
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb4
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb4
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb4
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb4
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb4
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb5
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb5
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb5
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb5
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb5
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb6
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb6
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb6
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb6
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb6
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb7
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb7
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb7
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb7
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb7
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb8
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb8
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb8
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb8
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb8
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb9
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb9
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb9
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb9
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb9
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb10
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb10
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb10
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb10
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb10
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb11
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb11
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb11
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb11
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb11
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb11
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb11
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb12
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb12
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb12
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb12
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb12
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb13
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb13
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb13
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb13
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb13
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb13
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb13
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb14
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb14
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb14
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb14
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb14
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb15
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb15
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb15
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb15
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb15
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb16
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb16
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb16
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb16
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb16
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb17
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb17
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb17
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb17
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb17
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb18
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb18
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb18
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb18
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb18
http://dx.doi.org/10.1109/TC.2021.3056070
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb20
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb20
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb20
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb20
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb20
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb21
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb21
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb21
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb21
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb21
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb22
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb22
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb22
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb22
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb22
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb23
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb23
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb23
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb23
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb23

Journal of Systems Architecture 142 (2023) 102955T. Zhou and M. Lin
[24] Y. Wang, M. Pedram, Model-free reinforcement learning and bayesian classifi-
cation in system-level power management, IEEE Trans. Comput. 65 (12) (2016)
3713–3726.

[25] F.M.M. ul Islam, M. Lin, Hybrid DVFS scheduling for real-time systems based on
reinforcement learning, IEEE Syst. J. 11 (2) (2015) 931–940.

[26] D. Ramegowda, M. Lin, Energy efficient mixed task handling on real-time
embedded systems using freertos, J. Syst. Archit. 131 (2022) 102708.

[27] Y. Wang, W. Zhang, M. Hao, Z. Wang, Online power management for multi-cores:
A reinforcement learning based approach, IEEE Trans. Parallel Distrib. Syst. 33
(4) (2021) 751–764.

[28] R.A. Shafik, S. Yang, A. Das, L.A. Maeda-Nunez, G.V. Merrett, B.M. Al-Hashimi,
Learning transfer-based adaptive energy minimization in embedded systems, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 35 (6) (2015) 877–890.

[29] S.K. Panda, M. Lin, T. Zhou, Energy efficient computation offloading with DVFS
using deep reinforcement learning for time-critical IoT applications in edge
computing, IEEE Internet Things J. (2022).

[30] T. Zhou, M. Lin, Deadline-aware deep-recurrent-q-network governor for smart
energy saving, IEEE Trans. Netw. Sci. Eng. (2021).

[31] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, D.
Kalenichenko, Quantization and training of neural networks for efficient integer-
arithmetic-only inference, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 2704–2713.

[32] S. Kaxiras, M. Martonosi, Computer architecture techniques for power-efficiency,
Synth. Lect. Comput. Archit. 3 (1) (2008) 1–207.

[33] Perf wiki, 2022, https://perf.wiki.kernel.org/index.php/Main_Page. (Accessed by
15 April 2022).

[34] R. Wysocki, CPU performance scaling, 2022, https://www.kernel.org/doc/html/
latest/admin-guide/pm/cpufreq.html. (Accessed by 21 May 2022).
17
[35] Using DVFS on raspberry pi, 2022, https://www.raspberrypi.com/
documentation/computers/raspberry-pi.html#using-dvfs. (Accessed by 03
May 2022).

[36] C.J.C.H. Watkins, Learning from Delayed Rewards, King’s College, Cambridge
United Kingdom, 1989.

[37] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double q-
learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol.
30, no. 1, 2016.

[38] T. Schaul, J. Quan, I. Antonoglou, D. Silver, Prioritized experience replay, 2015,
arXiv preprint arXiv:1511.05952.

[39] G. Bradski, The OpenCV Library, Dr. Dobb’s J. Softw. Tools (2000).
[40] T. Giannakopoulos, PyAudioAnalysis: An open-source python library for audio

signal analysis, PLoS One 10 (12) (2015).
[41] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown,

MiBench: A free, commercially representative embedded benchmark suite, in:
Proceedings of the Fourth Annual IEEE International Workshop on Workload
Characterization. WWC-4 (Cat. No. 01EX538), IEEE, 2001, pp. 3–14.

[42] D. Ramegowda, M. Lin, Can learning-based hybrid DVFS technique adapt to
different Linux embedded platforms? in: 2021 IEEE SmartWorld, Ubiquitous
Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing
& Communications, Internet of People and Smart City Innovation, IEEE, 2021,
pp. 170–177.

[43] V.W. Freeh, D.K. Lowenthal, Using multiple energy gears in MPI programs on a
power-scalable cluster, in: Proceedings of the Tenth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 2005, pp. 164–173.

[44] M. Gupta, L. Bhargava, S. Indu, Dynamic workload-aware DVFS for multicore
systems using machine learning, Computing 103 (2021) 1747–1769.

http://refhub.elsevier.com/S1383-7621(23)00134-0/sb24
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb24
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb24
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb24
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb24
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb25
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb25
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb25
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb26
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb26
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb26
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb27
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb27
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb27
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb27
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb27
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb28
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb28
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb28
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb28
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb28
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb29
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb29
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb29
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb29
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb29
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb30
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb30
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb30
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb31
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb31
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb31
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb31
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb31
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb31
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb31
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb32
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb32
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb32
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#using-dvfs
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#using-dvfs
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#using-dvfs
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb36
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb36
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb36
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb37
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb37
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb37
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb37
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb37
http://arxiv.org/abs/1511.05952
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb39
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb40
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb40
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb40
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb41
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb41
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb41
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb41
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb41
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb41
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb41
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb42
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb42
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb42
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb42
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb42
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb42
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb42
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb42
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb42
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb43
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb43
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb43
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb43
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb43
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb44
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb44
http://refhub.elsevier.com/S1383-7621(23)00134-0/sb44

	CPU frequency scheduling of real-time applications on embedded devices with temporal encoding-based deep reinforcement learning
	Introduction
	The Context of Energy Saving Problem
	Model-based or Model-free Energy Saving Method?
	Problem Statement and Proposed Approach
	Study the Limitation of Existing Model-Free DVFS Governors through Profiling
	Using Reinforcement Learning with Temporal Encoding to Derive Model-Free Governors

	Contribution

	Background
	Dynamic Power Consumption
	Static Power Consumption

	Low Overhead Kernel Profiling
	Linux built-in methods: Limitations
	Coarse-Grained Voltage/Frequency Support
	Unbalanced Load Distribution
	Internal Slack
	Why Extending this DVFS Framework cannot Cope with the three Patterns?

	Proposed Method
	Temporal Features of Workload and Learning
	Understanding Workload in terms of Time
	Explicit Temporal Encoding
	Reinforcement Learning Driven Policy Development

	Implementation
	Training

	Experimentation
	Experimental Setup
	Reward Curve
	Deadline Awareness
	Learned Policy
	Energy Saving
	Inference Time Overhead
	Deadline missing

	Compare with using RNN for end-to-end learning
	Related Work
	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

